Tree-based Secondary Structure Interactions Predictor Method for Protein Contact Maps

2018 ◽  
Vol 22 (4) ◽  
Author(s):  
Julio César Quintana-Zaez ◽  
Reynaldo Molina-Ruiz ◽  
Cosme Ernesto Santiesteban-Toca
2008 ◽  
Vol 24 (10) ◽  
pp. 1313-1315 ◽  
Author(s):  
Marco Vassura ◽  
Luciano Margara ◽  
Pietro Di Lena ◽  
Filippo Medri ◽  
Piero Fariselli ◽  
...  

2021 ◽  
Author(s):  
Xuyang Liu ◽  
Lei Jin ◽  
Shenghua Gao ◽  
Suwen Zhao

The prediction of protein contact map needs enough normalized number of effective sequence (Nf) in multiple sequence alignment (MSA). When Nf is small, the predicted contact maps are often not satisfactory. To solve this problem, we randomly selected a small part of sequence homologs for proteins with large Nf to generate MSAs with small Nf. From these MSAs, input features were generated and were passed through a consistency learning network, aiming to get the same results when using the features generated from the MSA with large Nf. The results showed that this method effectively improves the prediction accuracy of protein contact maps with small Nf.


2021 ◽  
Vol 17 (3) ◽  
pp. e1008865
Author(s):  
Yang Li ◽  
Chengxin Zhang ◽  
Eric W. Bell ◽  
Wei Zheng ◽  
Xiaogen Zhou ◽  
...  

The topology of protein folds can be specified by the inter-residue contact-maps and accurate contact-map prediction can help ab initio structure folding. We developed TripletRes to deduce protein contact-maps from discretized distance profiles by end-to-end training of deep residual neural-networks. Compared to previous approaches, the major advantage of TripletRes is in its ability to learn and directly fuse a triplet of coevolutionary matrices extracted from the whole-genome and metagenome databases and therefore minimize the information loss during the course of contact model training. TripletRes was tested on a large set of 245 non-homologous proteins from CASP 11&12 and CAMEO experiments and outperformed other top methods from CASP12 by at least 58.4% for the CASP 11&12 targets and 44.4% for the CAMEO targets in the top-L long-range contact precision. On the 31 FM targets from the latest CASP13 challenge, TripletRes achieved the highest precision (71.6%) for the top-L/5 long-range contact predictions. It was also shown that a simple re-training of the TripletRes model with more proteins can lead to further improvement with precisions comparable to state-of-the-art methods developed after CASP13. These results demonstrate a novel efficient approach to extend the power of deep convolutional networks for high-accuracy medium- and long-range protein contact-map predictions starting from primary sequences, which are critical for constructing 3D structure of proteins that lack homologous templates in the PDB library.


2018 ◽  
Vol 35 (14) ◽  
pp. 2403-2410 ◽  
Author(s):  
Jack Hanson ◽  
Kuldip Paliwal ◽  
Thomas Litfin ◽  
Yuedong Yang ◽  
Yaoqi Zhou

Abstract Motivation Sequence-based prediction of one dimensional structural properties of proteins has been a long-standing subproblem of protein structure prediction. Recently, prediction accuracy has been significantly improved due to the rapid expansion of protein sequence and structure libraries and advances in deep learning techniques, such as residual convolutional networks (ResNets) and Long-Short-Term Memory Cells in Bidirectional Recurrent Neural Networks (LSTM-BRNNs). Here we leverage an ensemble of LSTM-BRNN and ResNet models, together with predicted residue-residue contact maps, to continue the push towards the attainable limit of prediction for 3- and 8-state secondary structure, backbone angles (θ, τ, ϕ and ψ), half-sphere exposure, contact numbers and solvent accessible surface area (ASA). Results The new method, named SPOT-1D, achieves similar, high performance on a large validation set and test set (≈1000 proteins in each set), suggesting robust performance for unseen data. For the large test set, it achieves 87% and 77% in 3- and 8-state secondary structure prediction and 0.82 and 0.86 in correlation coefficients between predicted and measured ASA and contact numbers, respectively. Comparison to current state-of-the-art techniques reveals substantial improvement in secondary structure and backbone angle prediction. In particular, 44% of 40-residue fragment structures constructed from predicted backbone Cα-based θ and τ angles are less than 6 Å root-mean-squared-distance from their native conformations, nearly 20% better than the next best. The method is expected to be useful for advancing protein structure and function prediction. Availability and implementation SPOT-1D and its data is available at: http://sparks-lab.org/. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Filomeno Sánchez Rodríguez ◽  
Shahram Mesdaghi ◽  
Adam J Simpkin ◽  
J Javier Burgos-Mármol ◽  
David L Murphy ◽  
...  

Abstract Summary Covariance-based predictions of residue contacts and inter-residue distances are an increasingly popular data type in protein bioinformatics. Here we present ConPlot, a web-based application for convenient display and analysis of contact maps and distograms. Integration of predicted contact data with other predictions is often required to facilitate inference of structural features. ConPlot can therefore use the empty space near the contact map diagonal to display multiple coloured tracks representing other sequence-based predictions. Popular file formats are natively read and bespoke data can also be flexibly displayed. This novel visualization will enable easier interpretation of predicted contact maps. Availability and implementation available online at www.conplot.org, along with documentation and examples. Alternatively, ConPlot can be installed and used locally using the docker image from the project’s Docker Hub repository. ConPlot is licensed under the BSD 3-Clause. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Marco Vassura ◽  
Luciano Margara ◽  
Filippo Medri ◽  
Pietro di Lena ◽  
Piero Fariselli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document