contact map
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 57)

H-INDEX

24
(FIVE YEARS 4)

GigaScience ◽  
2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Youngik Yang ◽  
Ji Yong Yoo ◽  
Sang Ho Baek ◽  
Ha Yeun Song ◽  
Seonmi Jo ◽  
...  

Abstract Background The shuttles hoppfish (mudskipper), Periophthalmus modestus, is one of the mudskippers, which are the largest group of amphibious teleost fishes, which are uniquely adapted to live on mudflats. Because mudskippers can survive on land for extended periods by breathing through their skin and through the lining of the mouth and throat, they were evaluated as a model for the evolutionary sea-land transition of Devonian protoamphibians, ancestors of all present tetrapods. Results A total of 39.6, 80.2, 52.9, and 33.3 Gb of Illumina, Pacific Biosciences, 10X linked, and Hi-C data, respectively, was assembled into 1,419 scaffolds with an N50 length of 33 Mb and BUSCO score of 96.6%. The assembly covered 117% of the estimated genome size (729 Mb) and included 23 pseudo-chromosomes anchored by a Hi-C contact map, which corresponded to the top 23 longest scaffolds above 20 Mb and close to the estimated one. Of the genome, 43.8% were various repetitive elements such as DNAs, tandem repeats, long interspersed nuclear elements, and simple repeats. Ab initio and homology-based gene prediction identified 30,505 genes, of which 94% had homology to the 14 Actinopterygii transcriptomes and 89% and 85% to Pfam familes and InterPro domains, respectively. Comparative genomics with 15 Actinopterygii species identified 59,448 gene families of which 12% were only in P. modestus. Conclusions We present the high quality of the first genome assembly and gene annotation of the shuttles hoppfish. It will provide a valuable resource for further studies on sea-land transition, bimodal respiration, nitrogen excretion, osmoregulation, thermoregulation, vision, and mechanoreception.


2021 ◽  
Vol 8 ◽  
Author(s):  
Flavio Costa ◽  
Carlo Guardiani ◽  
Alberto Giacomello

The KCNA2 gene encodes the Kv1.2 channel, a mammalian Shaker-like voltage-gated K+ channel, whose defections are linked to neuronal deficiency and childhood epilepsy. Despite the important role in the kinetic behavior of the channel, the inactivation remained hereby elusive. Here, we studied the Kv1.2 inactivation via a combined simulation/network theoretical approach that revealed two distinct pathways coupling the Voltage Sensor Domain and the Pore Domain to the Selectivity Filter. Additionally, we mutated some residues implicated in these paths and we explained microscopically their function in the inactivation mechanism by computing a contact map. Interestingly, some pathological residues shown to impair the inactivation lay on the paths. In summary, the presented results suggest two pathways as the possible molecular basis of the inactivation mechanism in the Kv1.2 channel. These pathways are consistent with earlier mutational studies and known mutations involved in neuronal channelopathies.


2021 ◽  
Author(s):  
Rui Yang ◽  
Arnav Das ◽  
Vianne R. Gao ◽  
Alireza Karbalayghareh ◽  
William S. Noble ◽  
...  

AbstractRecent deep learning models that predict the Hi-C contact map from DNA sequence achieve promising accuracy but cannot generalize to new cell types and indeed do not capture cell-type-specific differences among training cell types. We propose Epiphany, a neural network to predict cell-type-specific Hi-C contact maps from five epigenomic tracks that are already available in hundreds of cell types and tissues: DNase I hypersensitive sites and ChIP-seq for CTCF, H3K27ac, H3K27me3, and H3K4me3. Epiphany uses 1D convolutional layers to learn local representations from the input tracks, a bidirectional long short-term memory (Bi-LSTM) layers to capture long term dependencies along the epigenome, as well as a generative adversarial network (GAN) architecture to encourage contact map realism. To improve the usability of predicted contact matrices, we trained and evaluated models using multiple normalization and matrix balancing techniques including KR, ICE, and HiC-DC+ Z-score and observed-over-expected count ratio. Epiphany is trained with a combination of MSE and adversarial (i.a., a GAN) loss to enhance its ability to produce realistic Hi-C contact maps for downstream analysis. Epiphany shows robust performance and generalization to held-out chromosomes within and across cell types and species, and its predicted contact matrices yield accurate TAD and significant interaction calls. At inference time, Epiphany can be used to study the contribution of specific epigenomic peaks to 3D architecture and to predict the structural changes caused by perturbations of epigenomic signals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mateus C. Adolfi ◽  
Kang Du ◽  
Susanne Kneitz ◽  
Cédric Cabau ◽  
Margot Zahm ◽  
...  

AbstractArapaima gigas is one of the largest freshwater fish species of high ecological and economic importance. Overfishing and habitat destruction are severe threats to the remaining wild populations. By incorporating a chromosomal Hi-C contact map, we improved the arapaima genome assembly to chromosome-level, revealing an unexpected high degree of chromosome rearrangements during evolution of the bonytongues (Osteoglossiformes). Combining this new assembly with pool-sequencing of male and female genomes, we identified id2bbY, a duplicated copy of the inhibitor of DNA binding 2b (id2b) gene on the Y chromosome as candidate male sex-determining gene. A PCR-test for id2bbY was developed, demonstrating that this gene is a reliable male-specific marker for genotyping. Expression analyses showed that this gene is expressed in juvenile male gonads. Its paralog, id2ba, exhibits a male-biased expression in immature gonads. Transcriptome analyses and protein structure predictions confirm id2bbY as a prime candidate for the master sex-determiner. Acting through the TGFβ signaling pathway, id2bbY from arapaima would provide the first evidence for a link of this family of transcriptional regulators to sex determination. Our study broadens our current understanding about the evolution of sex determination genetic networks and provide a tool for improving arapaima aquaculture for commercial and conservation purposes.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Anna Paola Muntoni ◽  
Andrea Pagnani ◽  
Martin Weigt ◽  
Francesco Zamponi

Abstract Background Boltzmann machines are energy-based models that have been shown to provide an accurate statistical description of domains of evolutionary-related protein and RNA families. They are parametrized in terms of local biases accounting for residue conservation, and pairwise terms to model epistatic coevolution between residues. From the model parameters, it is possible to extract an accurate prediction of the three-dimensional contact map of the target domain. More recently, the accuracy of these models has been also assessed in terms of their ability in predicting mutational effects and generating in silico functional sequences. Results Our adaptive implementation of Boltzmann machine learning, , can be generally applied to both protein and RNA families and accomplishes several learning set-ups, depending on the complexity of the input data and on the user requirements. The code is fully available at https://github.com/anna-pa-m/adabmDCA. As an example, we have performed the learning of three Boltzmann machines modeling the Kunitz and Beta-lactamase2 protein domains and TPP-riboswitch RNA domain. Conclusions The models learned by are comparable to those obtained by state-of-the-art techniques for this task, in terms of the quality of the inferred contact map as well as of the synthetically generated sequences. In addition, the code implements both equilibrium and out-of-equilibrium learning, which allows for an accurate and lossless training when the equilibrium one is prohibitive in terms of computational time, and allows for pruning irrelevant parameters using an information-based criterion.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
S. M. Mortuza ◽  
Wei Zheng ◽  
Chengxin Zhang ◽  
Yang Li ◽  
Robin Pearce ◽  
...  

AbstractSequence-based contact prediction has shown considerable promise in assisting non-homologous structure modeling, but it often requires many homologous sequences and a sufficient number of correct contacts to achieve correct folds. Here, we developed a method, C-QUARK, that integrates multiple deep-learning and coevolution-based contact-maps to guide the replica-exchange Monte Carlo fragment assembly simulations. The method was tested on 247 non-redundant proteins, where C-QUARK could fold 75% of the cases with TM-scores (template-modeling scores) ≥0.5, which was 2.6 times more than that achieved by QUARK. For the 59 cases that had either low contact accuracy or few homologous sequences, C-QUARK correctly folded 6 times more proteins than other contact-based folding methods. C-QUARK was also tested on 64 free-modeling targets from the 13th CASP (critical assessment of protein structure prediction) experiment and had an average GDT_TS (global distance test) score that was 5% higher than the best CASP predictors. These data demonstrate, in a robust manner, the progress in modeling non-homologous protein structures using low-accuracy and sparse contact-map predictions.


2021 ◽  
Author(s):  
Jaspreet Singh ◽  
Thomas Litfin ◽  
Jaswinder Singh ◽  
Kuldip Paliwal ◽  
Yaoqi Zhou

Motivation: Accurate prediction of protein contact map is essential for accurate proteins structure and function prediction. As a result, many methods have been developed for protein contact map prediction. However, most contact map prediction methods rely on protein sequence evolutionary information which may not exist for many proteins due to lack of sequence homology. Moreover, generating evolutionary profiles is computationally intensive and time consuming. Therefore, we developed a contact map predictor utilizing the output of a pre-trained language model ESM-1B as an input along with a large training set and an ensemble of residual neural networks. Results: We showed that the proposed method makes a significant improvement over a single-sequence-based predictor SSCpred with 15% improvement in the F1-score for the independent CASP14-FM test set. It also outperforms evolutionary-profile-based methods TrRosetta and SPOT-Contact with 48.7% and 48.5% respective improvement in the F1-score on the proteins in the SPOT-2018 set without homologs (Neff=1). The new method provides a much faster and reasonably accurate alternative to profile-based methods, useful for large-scale prediction, in particular.


Sign in / Sign up

Export Citation Format

Share Document