Depositional and Diagenetic Porosity, Reeves Field, San Andres Formation (Permian), Yoakum County, Texas: Field-Scale Reservoir Characterization in a Sequence Stratigraphic Framework: ABSTRACT

AAPG Bulletin ◽  
1995 ◽  
Vol 79 ◽  
Author(s):  
Ketema Amare, W. M. Ahr
2013 ◽  
Vol 5 (4) ◽  
Author(s):  
Mohamed Abdel-Fattah ◽  
Roger Slatt

AbstractUnderstanding sequence stratigraphy architecture in the incised-valley is a crucial step to understanding the effect of relative sea level changes on reservoir characterization and architecture. This paper presents a sequence stratigraphic framework of the incised-valley strata within the late Messinian Abu Madi Formation based on seismic and borehole data. Analysis of sand-body distribution reveals that fluvial channel sandstones in the Abu Madi Formation in the Baltim Fields, offshore Nile Delta, Egypt, are not randomly distributed but are predictable in their spatial and stratigraphic position. Elucidation of the distribution of sandstones in the Abu Madi incised-valley fill within a sequence stratigraphic framework allows a better understanding of their characterization and architecture during burial.Strata of the Abu Madi Formation are interpreted to comprise two sequences, which are the most complex stratigraphically; their deposits comprise a complex incised valley fill. The lower sequence (SQ1) consists of a thick incised valley-fill of a Lowstand Systems Tract (LST1)) overlain by a Transgressive Systems Tract (TST1) and Highstand Systems Tract (HST1). The upper sequence (SQ2) contains channel-fill and is interpreted as a LST2 which has a thin sandstone channel deposits. Above this, channel-fill sandstone and related strata with tidal influence delineates the base of TST2, which is overlain by a HST2. Gas reservoirs of the Abu Madi Formation (present-day depth ∼3552 m), the Baltim Fields, Egypt, consist of fluvial lowstand systems tract (LST) sandstones deposited in an incised valley. LST sandstones have a wide range of porosity (15 to 28%) and permeability (1 to 5080mD), which reflect both depositional facies and diagenetic controls.This work demonstrates the value of constraining and evaluating the impact of sequence stratigraphic distribution on reservoir characterization and architecture in incised-valley deposits, and thus has an important impact on reservoir quality evolution in hydrocarbon exploration in such settings.


2020 ◽  
Vol 117 ◽  
pp. 104398
Author(s):  
Sajjad Gharechelou ◽  
Abdolhossein Amini ◽  
Bahman Bohloli ◽  
Rudy Swennen ◽  
Abbasali Nikandish ◽  
...  

GeoArabia ◽  
2010 ◽  
Vol 15 (2) ◽  
pp. 91-156 ◽  
Author(s):  
Bastian Koehrer ◽  
Michael Zeller ◽  
Thomas Aigner ◽  
Michael Poeppelreiter ◽  
Paul Milroy ◽  
...  

ABSTRACT The Middle Permian to Lower Triassic Khuff Formation is one of the most important reservoir intervals in the Middle East. This study presents a sequence stratigraphic analysis of the Khuff Formation of a well-exposed outcrop in the Oman Mountains, which may provide a reference section for correlations across the entire Middle East. On the Saiq Plateau of the Al Jabal al-Akhdar, the Permian Upper Saiq Formation is time-equivalent to the Lower and Middle Khuff Formation (K5–K3 reservoir units in Oman). The Permian section is dominated by graded skeletal and peloidal packstones and cross-bedded grainstones with a diverse marine fauna. The Lower Mahil Member (Induan Stage), time-equivalent to the Upper Khuff Formation (K2–K1 reservoir units in Oman), is dominated by grainstones composed of microbially-coated intra-clasts and ooids. In general, the studied outcrop is characterized by a very high percentage of grain-dominated textures representing storm-dominated shoal to foreshoal deposits of a paleogeographically more distal portion of the Khuff carbonate ramp. A sequence-stratigraphic analysis was carried out by integrating lithostratigraphic marker beds, facies cycles, bio- and chemostratigraphy. The investigated outcrop section was subdivided into six third-order sequences, named KS 6 to KS 1. KS 6–KS 5 are interpreted to correspond to the Murgabian to Midian (ca. Wordian to Capitanian) stages. KS 4-Lower KS 2 correspond to the Dzhulfian (Wuchiapingian) to Dorashamian (Changhsingian) stages. Upper KS 2–KS 1 represent the Triassic Induan stage. Each of the six sequences was further subdivided into fourth-order cycle sets and fifth-order cycles. The documentation of this outcrop may contribute to a better regional understanding of the Khuff Formation on the Arabian Platform.


2017 ◽  
Vol 4 (1) ◽  
pp. 85 ◽  
Author(s):  
Zhipeng Lin ◽  
Le Chen ◽  
Jingfu Shan ◽  
Tan Zhang ◽  
Qianjun Sun ◽  
...  

Currently, the recognition and research on the classification of fluvial types mainly focus on the description and results of a series of indicators, such as the plane shape and sediment characteristics. However, there is limited literacy about how to demonstrate the fluvial types from the depositional process, especially less on sequence model of inland fluvial. Thus, this paper aims o propose a new kind of sequence stratigraphic framework, which is able to reflect the fluvial processes under the perspective of sequence stratigraphy. Accordingly, we use the principle of concrete analysis for concrete problems by comprehensively summing up the previous classification schemes of river types. With the research method of sedimentation process, new fluvial systems tracts for fluvial are presented here, including four parts: low fluvial system tract (LFST), advancing fluvial system tract (AFST), flooding fluvial system tract (FFST), receding fluvial system tract (RFST). Moreover, these could be applied to tackle the problem of the traditional division of fluvial. Various rivers have the different characteristics of systems tracts, then this may play a vital role in the discrimination of meandering river, braided river, anastomosing river and branched river. This study embodies the philosophical thought of Process Sedimentology and may contribute to revealing the deposition process of the fluvial system more profoundly from the aspect of genetic mechanism and evolution course. Most importantly, the fluvial classification system is definitely improved from the description stage to a complete rational stage.


Sign in / Sign up

Export Citation Format

Share Document