lateral deformation
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 57)

H-INDEX

17
(FIVE YEARS 2)

2022 ◽  
Vol 143 ◽  
pp. 104631
Author(s):  
Yunyi Li ◽  
Chao Luo ◽  
Jian-Min Zhang ◽  
Fang Liu ◽  
Rui Wang

Author(s):  
Jinxin Shi ◽  
Sheng Pan ◽  
Ron E. Markum ◽  
James K. Good

The lateral deformations of webs in roll-to-roll process machines can affect the quality of the manufactured products. Webs with simple nonuniform length variation across their width (camber) will steer toward the long side, leading to the steady state lateral deformation and hence registration. Most previous studies have focused on a cambered web in a free span between two rollers. These studies assume some displacement and slope boundary conditions are known and seek the remaining conditions that would dictate the steady state lateral deformation of the web. This article focuses on the lateral behavior of a cambered web belt transiting between two aligned rollers as the simplest case of multiple span cambered web. Dynamic simulation has been conducted to better understand the response of a cambered web under tension that has been witnessed in tests. There are no boundary conditions enforced and no steady state deformation of the cambered webs. Thus there is no closed-form solution to the lateral movement of a cambered web transits over multiple rollers. This explained why the previous research focused more on the experimental exploration without few theoretical validations. The web travels toward the long side continually from one span to the next until a web guide attempts to return the web to an acceptable lateral location in the process machine.


Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 3196-3205
Author(s):  
Hu Cheng ◽  
Dong-Sheng Wang ◽  
Hong-Nan Li ◽  
Xin-Chi Yan ◽  
She Yu

2021 ◽  
Vol 2078 (1) ◽  
pp. 012057
Author(s):  
Lu Jin ◽  
Chunli Zhang ◽  
Xiangyuan Meng

Abstract The direct analysis method based on deformation properties needs to predict the lateral deformation of the steel frame-support structure in advance, but it takes time and labor to use both finite element numerical simulation and experimental research. In this paper, the BP neural network receives the parameters of the steel frame-support structure, such as the aspect ratio, the second-order effect parameters, the slenderness ratio of frame columns, the rigidity ratio of beam-column bus and the deformation limit, with the lateral displacement of the column as the output layer, the second-order lateral deformation properties of the steel frame-support structure can be quickly obtained. Comparing the prediction results of BP neural network with those of the existing fitting formulas, the absolute difference and the relative error ratio between them are very small, which shows that the accuracy of the second-order column roof migration using the BP neural network prediction is high. The BP neural network can be used to judge the applicability of the direct analysis method based on the deformation properties of the steel frame-support structure under various parameters.


2021 ◽  
Vol 2115 (1) ◽  
pp. 012047
Author(s):  
Vishal Mehta ◽  
Mihir Chauhan

Abstract Soft actuators are the latest trend of research because of their light weight and ease of manufacturing and control. Soft actuators have expanded their fields and taken place in many applications where linear or angular deflection is required. Soft actuators are very useful in the applications where deflection is required with soft touch. Soft Actuators are highly compliant and adaptive to unknown environments. Because of these characteristics, soft actuators are very popular in the field of medical and in the applications where interaction with fragile structure is required. The soft actuators can give required responses mostly depends on their shape. Linear or angular deformation can be achieved by changing the geometrical shape of actuators. This paper presents the effect of geometrical shape on axial deformation of soft pneumatic actuator. Samples of soft actuators are selected with various shapes for finite element analysis. Results are obtained in form of axial and lateral deformation. An attempt is made to achieve good amount of axial deformation with very less or negligible lateral deformation by selecting appropriate shape. Based on the generated results, the shape is identified which gives desired results and more suitable among the selected nine samples. This sample can be useful in the application having space constraint in lateral direction.


Author(s):  
Zhe Li ◽  
Chenhui Guan ◽  
Meng Han ◽  
Jinqing Jia ◽  
Lulu Liu ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Leonardo Pichel ◽  
Oriol Ferrer ◽  
Christopher Jackson ◽  
Eduard Roca

The Santos Basin presents a complex and controversial evolution and distribution of salt tectonics domains. The controversies revolve mainly around the kinematically- linked Albian Gap and São Paulo Plateau. The Albian Gap is a ~450 km long and 60 km wide feature characterized by a post-Albian counter-regional rollover overlying depleted Aptian salt and in which the Albian is absent. The São Paulo Plateau is defined by a pre-salt structural high with significant base-salt topography and overlain by ~2.5 km thick salt. Another prominent feature is the Merluza Graben, a rift depocentre that underlies the southern portion of the Albian Gap and displays significant (3-4 km) of base-salt relief. Two competing hypotheses have been proposed to explain the origin and kinematics of these provinces. One invokes post- Albian extension within the Albian Gap and contraction in the Sao Paulo Plateau. The other invokes post-Albian salt expulsion in the Albian Gap and salt inflation in the São Paulo Plateau without significant lateral deformation. A recent study shows these processes contribute equally to the evolution of these domains, also demonstrating the importance of the previously neglected base-salt relief. We apply 3D physical modelling to test these new concepts and understand the interplay between laterally- variable base-salt relief, gliding and spreading on salt tectonics. Our results show a remarkably-similar salt and post-salt evolution and architecture to the Santos Basin as proposed in recent studies. They improve the understanding on the distribution and interaction of salt-related structural styles and gravity-driven processes, being also applicable to other salt-bearing margins.


Sign in / Sign up

Export Citation Format

Share Document