Present Interpretations of the Structural Theory for Oil and Gas Migration and Accumulation

Author(s):  
Alex. W. McCoy ◽  
W. Ross Keyte
2012 ◽  
Vol 616-618 ◽  
pp. 174-184
Author(s):  
Yong He Sun ◽  
Lin Kang ◽  
Feng Xiang Yang ◽  
Xue Song Li

In order to reveal in middle fault depression belt of Hailer-Tamtsag Basin buried hill oil and gas migration and accumulation characteristics, we summarize controlling effect of fault on oil and gas migration and accumulation of buried hill, which by analysing genetic mechanism of buried hills based on fault systems formation and evolution. Research shows that three types of fault system in Hailer-Tamtsag Basin: early stretched fault system(Type I), early stretched middle tensile shearing fault system(Type I-II), early stretched middle tensile shearing reverse late fault system(Type I-II-III). Type I-II and I-II-III are stretching by NW tensional stress in Nantun group ,which afford tectonic framework for syngenesis buried hill and epigenetic buried hill. Type I make buried hills complicated .It is also favorable to ancient geomorphological buried hill in the fault less affected zones. Although they formed cracks dense zone easier, Type I-II and I-II-III fault system damage the reservoir which is not conducive to " hydrocarbon-supplying window " formation; Type I fault system have less promotion on the development of the buried hill reservoir, while it is conducive to hydrocarbon accumulation as the block boundary in buried hill hydrocarbon. Fault formed source rocks two kinds for hydrocarbon mode: unidirectional and bidirectional, which formed two reservoir-forming pattern: Unidirectional transportation hydrocarbon of weathering crust or hydrocarbon of fracture damage zones and bidirectional transportation hydrocarbon of weathering crust or hydrocarbon of fracture damage zones.


2013 ◽  
Vol 734-737 ◽  
pp. 1175-1178
Author(s):  
Hong Qi Yuan ◽  
Ying Hua Yu ◽  
Fang Liu

Based on the analysis of the relationships between the conditions of structures, sedimentations, source rocks, cap rocks, faults, oil and gas migration passages and traps and hydrocarbon accumulation, the controlling factors of hydrocarbon accumulation and distribution was studied in Talaha-changjiaweizi area. It is held that the source rocks control the hydrocarbon vertical distribution, the drainage capabilities control the hydrocarbon plane distribution, fracture belts control the hydrocarbon accumulation of Talaha syncline, underwater distributary channel is a favorable accumulation environment and reservoir physical properties control the oil and water distributions. Therefore, it is concluded that source rocks, fracture belts, sedimentary microfacies and reservoir physical properties are the main controlling factors of hydrocarbon accumulation and distribution in Talaha-changjiaweizi area.


2018 ◽  
Vol 25 (4) ◽  
pp. 121-132 ◽  
Author(s):  
James A. Montague ◽  
George F. Pinder ◽  
Theresa L. Watson

1993 ◽  
Vol 9 (3) ◽  
pp. 223-238 ◽  
Author(s):  
A.E. Gurevich ◽  
B.L. Endres ◽  
J.O. Robertson ◽  
G.V. Chilingar

Author(s):  
George Kwatia ◽  
Mustafa Al Ramadan ◽  
Saeed Salehi ◽  
Catalin Teodoriu

Abstract Cementing operations in deepwater exhibit many challenges worldwide due to shallow flows. Cement sheath integrity and durability play key roles in the oil and gas industry, particularly during drilling and completion stages. Cement sealability serves in maintaining the well integrity by preventing fluid migration to surface and adjacent formations. Failure of cement to seal the annulus can lead to serious dilemmas that may result in loss of well integrity. Gas migration through cemented annulus has been a major issue in the oil and gas industry for decades. Anti-gas migration additives are usually mixed with the cement slurry to combat and prevent gas migration. In fact, these additives enhance and improve the cement sealability, bonding, and serve in preventing microannuli evolution. Cement sealability can be assessed and evaluated by their ability to seal and prevent any leakage through and around the cemented annulus. Few laboratory studies have been conducted to evaluate the sealability of oil well cement. In this study, a setup was built to simulate the gas migration through and around the cement. A series of experiments were conducted on these setups to examine the cement sealability of neat Class H cement and also to evaluate the effect of anti-gas migration additives on the cement sealability. Different additives were used in this setup such as microsilica, fly ash, nanomaterials and latex. Experiments conducted in this work revealed that the cement (without anti-gas migration additive) lack the ability to seal the annulus. Cement slurries prepared with latex improved the cement sealability and mitigated gas migration for a longer time compared to the other slurries. The cement slurry formulated with a commercial additive completely prevented gas migration and proved to be a gas tight. Also, it was found that slurries with short gas transit times have a decent potential to mitigate gas migration, and this depends on the additives used to prepare the cement slurry.


Sign in / Sign up

Export Citation Format

Share Document