scholarly journals Structure, Infrared and Raman spectroscopic studies of new AII(SbV0.50CrIII0.50)(PO4)2 (A = Ba, Sr, Pb) yavapaiite phases

2020 ◽  
Vol 10 (8) ◽  
pp. 734
Author(s):  
Hajar Bellefqih ◽  
Rachid Fakhreddine ◽  
Rachid Tigha ◽  
Abderrahim Aatiq

<p class="Mabstract">Three new A<sup>II</sup>(Sb<sub>0.5</sub>Cr<sub>0.5</sub>)(PO<sub>4</sub>)<sub>2</sub> (A<sup>II</sup> = Ba, Sr, Pb) yavapaiite phases, abbreviated as [ASbCr], have been successfully synthesized by a conventional solid-state reaction in air atmosphere. Their crystal structures have been investigated by Rietveld analysis from the X-ray powder diffraction method. Results show that Ba(Sb<sub>0.5</sub>Cr<sub>0.5</sub>)(PO<sub>4</sub>)<sub>2</sub> crystallizes in monoclinic <em>C</em>2<em>/m</em> space group (Z = 2) with cell parameters a = 8.140(1) Å; b = 5.175(1) Å; c = 7.802(1) Å and β = 94.387(1)°. Structures of A<sup>II</sup>(Sb<sub>0.5</sub>Cr<sub>0.5</sub>)(PO<sub>4</sub>)<sub>2</sub> (A<sup>II </sup>= Sr, Pb) compounds are comparable, and both crystallize in a distorted yavapaiite structure with <em>C</em>2<em>/c</em> space group (Z = 4). Obtained monoclinic cell parameters are: a = 16.5038(2) Å; b = 5.1632(1) Å; c = 8.0410(1) Å; β = 115.85(1) for [SrSbCr] and a = 16.684(2) Å; b = 5.156(1) Å c = 8.115(1) Å; β = 115.35(1)° for [PbSbCr]. Infrared and Raman spectroscopic study was undertaken to provide information about vibrations bonds within the studied yavapaiite materials.</p>

2006 ◽  
Vol 21 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Abderrahim Aatiq ◽  
My Rachid Tigha ◽  
Rabia Hassine ◽  
Ismael Saadoune

Crystallographic structures of two new orthophosphates Ca0.50SbFe(PO4)3 and CaSb0.50Fe1.50(PO4)3 obtained by conventional solid state reaction techniques at 900 °C, were determined at room temperature from X-ray powder diffraction using Rietveld analysis. The two compounds belong to the Nasicon structural family. The space group is R3 for Ca0.50SbFe(PO4)3 and R3c for CaSb0.50Fe1.50(PO4)3. Hexagonal cell parameters for Ca0.50SbFe(PO4)3 and CaSb0.50Fe1.50(PO4)3 are: a=8.257(1) Å, c=22.276(2) Å, and a=8.514(1) Å, c=21.871(2) Å, respectively. Ca2+ and vacancies in {[Ca0.50]3a[◻0.50]3b}M1SbFe(PO4)3 are ordered within the two positions, 3a and 3b, of M1 sites. Structure refinements show also a quasi-ordered distribution of Sb5+ and Fe3+ ions within the Nasicon framework. Thus, in {[Ca0.50]3a[◻0.50]3b}M1SbFe(PO4)3, each Ca(3a)O6 octahedron shares two faces with two Fe3+O6 octahedra and each vacancy (◻(3b)O6) site is located between two Sb5+O6 octahedra. In [Ca]M1Sb0.50Fe1.50(PO4)3 compound (R3c space group), all M1 sites are occupied by Ca2+ and the Sb5+ and Fe3+ ions are randomly distributed within the Nasicon framework.


2013 ◽  
Vol 29 (1) ◽  
pp. 14-19 ◽  
Author(s):  
Abderrahim Aatiq ◽  
My Rachid Tigha

A new Ca1/3Sb1/6Bi1/2PO4 “CaSb0.50Bi1.50(PO4)3” phosphate has been synthesized by conventional solid-state reaction techniques at 900 °C in air atmosphere. Their crystallographic structures were determined at room temperature from X-ray powder diffraction (XRPD) data using the Rietveld analysis. CaII1/3SbV1/6BiIII1/2PO4 material possesses the high-temperature BiPO4 monoclinic structure variety. It crystallizes in monoclinic system with P21/m space group and the cell parameters are: a = 4.9358(1) Å, b = 6.9953(2), c = 4.7075(1) Å, and β = 96.2(1)°. Their structure can be described as composed of alternating edge-sharing AO8 (A = Ca, Sb, Bi) bisdisphenoids and PO4 tetrahedra forming chains parallel to the b axis. Every AO8 polyhedron is surrounded by six PO4 and every PO4 tetrahedron is surrounded by six AO8 polyhedra. Infrared spectroscopic study was used to obtain further structural information.


2004 ◽  
Vol 19 (2) ◽  
pp. 165-171 ◽  
Author(s):  
Alla B. Antonova ◽  
Oleg S. Chudin ◽  
Sergei D. Kirik

Four manganese carbonyl complexes: CpMn(CO)3 (1) and its phenylvinylidene derivatives Cp(CO)2Mn=C=CHPh (2), [Cp(CO)2Mn]2(μ-C=CHPh) (3), and Cp(CO)2Mn=C=C(Ph)–C(Ph)=C=Mn(CO)2Cp (4) have been studied by X-ray powder diffraction and their unit cell parameters are reported. The monoclinic cell parameters found for complex (1) are a=12.0479(7) Å, b=7.0614(5) Å, c=10.9172(6) Å, β=117.626(2)°, Z=4, space group P2(1)/a (No. 14). The orthorhombic cells parameters for complex (2) are a=10.5240(12) Å, b=33.1105(48) Å, c=7.5007(9) Å, Z=8, space group PCCN (No. 56); for complex (3) are a=15.3545(17) Å, b=15.3966(18) Å, c=8.0033(7) Å, Z=4, space group P21212121 (No. 19). The parameters found for complexes (1–3) are in good agreement with those obtained from single crystal X-ray diffractometry. The single crystal structure of complex (4) has not been studied. The orthorhombic cell parameters for complex (4) found by X-ray powder diffraction method are a=10.0986(9) Å, b=33.2937(27) Å, c=7.4139(5) Å, Z=4, space group P21 (No. 4).


2018 ◽  
Vol 33 (3) ◽  
pp. 216-224 ◽  
Author(s):  
V. D. Zhuravlev ◽  
A. P. Tyutyunnik ◽  
A. Y. Chufarov ◽  
N. I. Lobachevskaya ◽  
A. A. Velikodnyi

Polycrystalline samples of Ca2Zn2(V4O14) (I) and Pb2Cd2(V3O10)(VO4) (II) were synthesized using the nitrate–citrate method (I) and conventional solid state reaction (II). The structural refinement based on X-ray powder diffraction data showed that the crystal structure of (I) is characterized by monoclinic symmetry with unit-cell parameters a = 6.8044(1) Å, b = 14.4876(3) Å, c = 11.2367(2) Å, β = 99.647(1)° [space group P21/c (No. 14), Z = 4], and the crystal structure of (II) is triclinic with unit-cell parameters a = 7.03813(6) Å, b = 12.9085(1) Å, c = 6.99961(5) Å, α = 90.7265(5)°, β = 96.3789(5)°, γ = 94.9530(6)°, V = 629.470(8) Å3 [space group P$\bar 1$ (No. 2), Z = 2].


2004 ◽  
Vol 19 (3) ◽  
pp. 272-279 ◽  
Author(s):  
Abderrahim Aatiq

The crystal structures of ASnFe(PO4)3 (A=Na2, Ca, Cd) phases, obtained by conventional solid state reaction techniques at (950–1000 °C), were determined at room temperature from X-ray powder diffraction (XRD) using Rietveld analysis. The three materials exhibit the Nasicon-type structure (R3c space group, Z=6) with a random distribution of Sn(Fe) within the framework. Hexagonal cell parameters when A=Na2, Ca and Cd are: a=8.628(1) Å, c=22.151(2) Å; a=8.569(1) Å, c=22.037(2) Å and a=8.587(1) Å, c=21.653(2) Å, respectively. Structural refinements show a partial occupancy of M1 (Na(1)) and M2 (Na(2)) sites in Na2SnFe(PO4)3 leading to the cationic distribution [Na1.22□1.78]M2[Na0.78□0.22]M1SnFe(PO4)3. Ca2+ ions are distributed only in the M1 site of [□3]M2[Ca]M1SnFe(PO4)3. From XRD data, it is difficult to unambiguously distinguish between Cd2+ and Sn4+ ions in CdSnFe(PO4)3. Nevertheless the overall set of cation–anion distances within the Nasicon framework clearly shows that the cationic distribution can be illustrated by the [□3]M2[Cd]M1SnFe(PO4)3 crystallographic formula. Distortion within the [Sn(Fe)(PO4)3] frameworks, in ASnFe(PO4)3 (A=Na2,Ca,Cd) phases, is shown to be related to the M1 site size. © 2004 International Centre for Diffraction Data.


2005 ◽  
Vol 20 (3) ◽  
pp. 246-253
Author(s):  
Alla B. Antonova ◽  
Oleg S. Chudin ◽  
Sergei D. Kirik

Four heterometallic carbonyl complexes: (1) Cp(CO)2MnPt(μ-C=CHPh)dppm) (2) [Cp(CO)2MnCu(μ-C=CHPh)(μ-Cl)]2, (3) CpMnFe2(μ3-C=CHPh)(CO)8, and (4) η4-[Cp(CO)2MnC(CO)CHPh]Fe(CO)3 have been studied by X-ray powder diffraction and their unit cell parameters are reported. Orthorhombic cell parameters for complex (1) are a=18.5719(14) Å, b=18.6092(14) Å, c=23.8117(18) Å, Z=8, space group Pbca. Monoclinic cell parameters found for complex (2) are a=11.5816(5) Å, b=7.9784(5) Å, c=16.7819(7) Å, β=105.460(2)°, Z=2, space group P21∕n. Orthorhombic cell parameters for complex (3) are a=13.5260(9) Å, b=15.1487(10) Å, c=10.3330(6) Å, Z=4, space group Pna21. Monoclinic cell parameters for complex (4) are a=10.3545(45) Å, b=8.0002(43) Å, c=21.8355(95) Å, β=102.89(2), Z=4, space group P21∕c. Parameters found for complexes (1–4) are in good agreement with those obtained from single crystal X-ray diffractometry.


2002 ◽  
Vol 17 (1) ◽  
pp. 44-47
Author(s):  
Yu PuLan ◽  
Ding Shuang ◽  
Qiao YuanYuan ◽  
Yao XinKan ◽  
Liu Chong ◽  
...  

Two compounds have been studied by means of powder diffraction and their unit cell parameters are reported. The monoclinic cell parameters for dimethylgermanyl-bridged bis cyclopentadienyl tetracarbonyl diruthenium are a=11.03(2) Å, b=13.65(2) Å, c=11.609(2) Å, β=105.81(1)°, Z=4, space group P21/n (No. 14), Dx=2.135 mg/m3. The monoclinic cell parameters for λ-dimethylsilyl-dicyclopentadienyl-π, π′-tetracarbonyl diruthenium, are a=11.113(3) Å, b=13.60(1) Å, c=11.674(7) Å, and β=106.00(3)°, Z=4, space group P21/n (No. 14), and Dx=1.946 mg/m3. The cells found for the two compounds are in good agreement with those obtained from single crystal X-ray diffractometry.


2007 ◽  
Vol 22 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Abderrahim Aatiq ◽  
Rachid Bakri

Synthesis and structure of two phosphates belonging to the ternary Sb2O5-Fe2O3-P2O5 system are reported. Structures of both SbV1.50FeIII0.50(PO4)3 and (SbV0.50FeIIIe0.50)P2O7 phases, obtained by solid state reaction in air atmosphere at 950 °C and 900 °C, respectively, were determined at room temperature from X-ray powder diffraction using the Rietveld method. Sb1.50Fe0.50(PO4)3 phosphate belongs to the Nasicon-type structure with R32 space group. Hexagonal cell parameters are ahex.=8.305(1) Å and chex.=22.035(2) Å. Rietveld refinement results show a 2-2 ordered distribution, along the c-axis, of X(1) and X(2) sites (crystallographic formula [Sb0.88Fe0.12]X(1)[Fe0.38Sb0.62]X(2)(PO4)3) in the Nasicon framework. (Sb0.50Fe0.50)P2O7 is isotypic with β-SbP2O7 pyrophosphate [Pna21 space group; a=7.865(1) Å, b=15.699(2) Å, c=7.847(1) Å]. Its crystal structure is built up from corner-shared SbO6 or FeO6 octahedra and P2O7 groups (two group types). Each P2O7 group shares its six vertices with three SbO6 and three FeO6 octahedra, and each octahedra is connected to six P2O7 groups. A quasi 1-1 ordered distribution, along the b-axis, of Sb5+ and Fe3+ ions in the pyrophosphate framework are observed.


2000 ◽  
Vol 15 (2) ◽  
pp. 112-115 ◽  
Author(s):  
Ruggero Caminiti ◽  
Giancarlo Ortaggi ◽  
Raffaele Antonio Mazzei ◽  
Paolo Ballirano ◽  
Rita Rizzi

New powder X-ray diffraction data of adenosine C10H13N5O4 were reported: cell parameters are a=4.8386(4) Å, b=10.2919(4) Å, c=11.8555(4) Å, β=99.298(5)°, volume 582.63(4)Å for the monoclinic space group P21. The strongest lines are: 7.723 (100), 5.085 (50), 5.851 (45), 4.710 (11), 3.881 (10), 3.899 (9), 3.292 (9), and 3.261 (9). Reported intensities are validated by Rietveld analysis. The data consist of measured positions and intensities and cover an angular range up to 75° 2θ and are significantly better than PDF 35-1977. Experimental, calculated, and difference patterns are also reported.


2000 ◽  
Vol 15 (2) ◽  
pp. 108-111 ◽  
Author(s):  
Ruggero Caminiti ◽  
Giancarlo Ortaggi ◽  
Raffaele Antonio Mazzei ◽  
Paolo Ballirano ◽  
Rita Rizzi

Powder X-ray diffraction data of melatonin C13H16N2O2 were collected on a conventional X-ray powder diffractometer: the monoclinic cell parameter are a=7.7416(8) Å, b=9.2897(9) Å, c=17.1444(16) Å, β=96.756(9)°, volume 1224.4(3) Å3 (space group P21/c). The strongest lines are (d (Å), I/I0) 8.161 (100), 5.411 Å (46), 3.412 Å (34), 4.668 Å (33), 4.645 Å (25), 3.554 Å (22), 3.668 Å (16), and 4.483 Å (14). Reported intensities are validated by Rietveld analysis. The data consist of measured positions and intensities and cover an angular range up to 60° 2θ: experimental, calculated, and difference patterns are also reported.


Sign in / Sign up

Export Citation Format

Share Document