Tritium Permeation Characterization of Materials for Fusion and Generation IV Very High Temperature Reactors

2015 ◽  
Vol 67 (3) ◽  
pp. 475-478
Author(s):  
S. Thomson ◽  
K. Pilatzke ◽  
K. McCrimmon ◽  
I. Castillo ◽  
S. Suppiah
2010 ◽  
Vol 76 (764) ◽  
pp. 383-385 ◽  
Author(s):  
Taiju SHIBATA ◽  
Junya SUMITA ◽  
Taiyo MAKITA ◽  
Takashi TAKAGI ◽  
Eiji KUNIMOTO ◽  
...  

Author(s):  
William J. O’Donnell ◽  
Amy B. Hull ◽  
Shah Malik

Since the 1980s, the ASME Code has made numerous improvements in elevated-temperature structural integrity technology. These advances have been incorporated into Section II, Section VIII, Code Cases, and particularly Subsection NH of Section III of the Code, “Components in Elevated Temperature Service.” The current need for designs for very high temperature and for Gen IV systems requires the extension of operating temperatures from about 1400°F (760°C) to about 1742°F (950°C) where creep effects limit structural integrity, safe allowable operating conditions, and design life. Materials that are more creep and corrosive resistant are needed for these higher operating temperatures. Material models are required for cyclic design analyses. Allowable strains, creep fatigue and creep rupture interaction evaluation methods are needed to provide assurance of structural integrity for such very high temperature applications. Current ASME Section III design criteria for lower operating temperature reactors are intended to prevent through-wall cracking and leaking and corresponding criteria are needed for high temperature reactors. Subsection NH of Section III was originally developed to provide structural design criteria and limits for elevated-temperature design of Liquid-Metal Fast Breeder Reactor (LMFBR) systems and some gas-cooled systems. The U.S. Nuclear Regulatory Commission (NRC) and its Advisory Committee for Reactor Safeguards (ACRS) reviewed the design limits and procedures in the process of reviewing the Clinch River Breeder Reactor (CRBR) for a construction permit in the late 1970s and early 1980s, and identified issues that needed resolution. In the years since then, the NRC, DOE and various contractors have evaluated the applicability of the ASME Code and Code Cases to high-temperature reactor designs such as the VHTGRs, and identified issues that need to be resolved to provide a regulatory basis for licensing. The design lifetime of Gen IV Reactors is expected to be 60 years. Additional materials including Alloy 617 and Hastelloy X need to be fully characterized. Environmental degradation effects, especially impure helium and those noted herein, need to be adequately considered. Since cyclic finite element creep analyses will be used to quantify creep rupture, creep fatigue, creep ratcheting and strain accumulations, creep behavior models and constitutive relations are needed for cyclic creep loading. Such strain- and time-hardening models must account for the interaction between the time-independent and time-dependent material response. This paper describes the evolving structural integrity evaluation approach for high temperature reactors. Evaluation methods are discussed, including simplified analysis methods, detailed analyses of localized areas, and validation needs. Regulatory issues including weldment cracking, notch weakening, creep fatigue/creep rupture damage interactions, and materials property representations for cyclic creep behavior are also covered.


Author(s):  
Stéphane Gossé ◽  
Thierry Alpettaz ◽  
Sylvie Chatain ◽  
Christine Guéneau

The alloys Haynes 230 and Inconel 617 are potential candidates for the intermediate heat exchangers (IHXs) of (very) high temperature reactors ((V)-HTRs). The behavior under corrosion of these alloys by the (V)-HTR coolant (impure helium) is an important selection criterion because it defines the service life of these components. At high temperature, the Haynes 230 is likely to develop a chromium oxide on the surface. This layer protects from the exchanges with the surrounding medium and thus confers certain passivity on metal. At very high temperature, the initial microstructure made up of austenitic grains and coarse intra- and intergranular M6C carbide grains rich in W will evolve. The M6C carbides remain and some M23C6 richer in Cr appear. Then, carbon can reduce the protective oxide layer. The alloy loses its protective coating and can corrode quickly. Experimental investigations were performed on these nickel based alloys under an impure helium flow (Rouillard, F., 2007, “Mécanismes de formation et de destruction de la couche d’oxyde sur un alliage chrominoformeur en milieu HTR,” Ph.D. thesis, Ecole des Mines de Saint-Etienne, France). To predict the surface reactivity of chromium under impure helium, it is necessary to determine its chemical activity in a temperature range close to the operating conditions of the heat exchangers (T≈1273 K). For that, high temperature mass spectrometry measurements coupled to multiple effusion Knudsen cells are carried out on several samples: Haynes 230, Inconel 617, and model alloys 1178, 1181, and 1201. This coupling makes it possible for the thermodynamic equilibrium to be obtained between the vapor phase and the condensed phase of the sample. The measurement of the chromium ionic intensity (I) of the molecular beam resulting from a cell containing an alloy provides the values of partial pressure according to the temperature. This value is compared with that of the pure substance (Cr) at the same temperature. These calculations provide thermodynamic data characteristic of the chromium behavior in these alloys. These activity results call into question those previously measured by Hilpert and Ali-Khan (1978, “Mass Spectrometric Studies of Alloys Proposed for High-Temperature Reactor Systems: I. Alloy IN-643,” J. Nucl. Mater., 78, pp. 265–271; 1979, “Mass Spectrometric Studies of Alloys Proposed for High-Temperature Reactor Systems: II. Inconel Alloy 617 and Nimomic Alloy PE 13,” J. Nucl. Mater., 80, pp. 126–131), largely used in the literature.


Author(s):  
Silvio Baier ◽  
Ulrich Rohde ◽  
Soeren Kliem ◽  
Emil Fridman

The reactor dynamics code DYN3D was extended to treat phenomena in Block-type High Temperature Reactors (HTR). Therefor, a new heat conduction model was implemented into the code to tackle 3D effects of heat conduction and heat transfer. The first part of the paper describes the details of the heat conduction model. In the second part results of coupled neutron-kinetics/thermal-hydraulics calculations of steady state and short-time transients in block-type HTRs are discussed.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 658
Author(s):  
Štefan Michna ◽  
Anna Knaislová ◽  
Iryna Hren ◽  
Jan Novotný ◽  
Lenka Michnová ◽  
...  

This article is devoted to the characterization of a new Co-W-Al alloy prepared by an aluminothermic reaction. This alloy is used for the subsequent preparation of a special composite nanopowder and for the surface coating of aluminum, magnesium, or iron alloys. Due to the very high temperature (2000 °C–3000 °C) required for the reaction, thermite was added to the mixture. Pulverized coal was also added in order to obtain the appropriate metal carbides (Co, W, Ti), which increase hardness, resistance to abrasion, and the corrosion of the coating and have good high temperature properties. The phase composition of the alloy prepared by the aluminothermic reaction showed mainly cobalt, tungsten, and aluminum, as well as small amounts of iron, titanium, and calcium. No carbon was identified using this method. The microstructure of this alloy is characterized by a cobalt matrix with smaller regular and irregular carbide particles doped by aluminum.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Stéphane Gossé ◽  
Christine Guéneau ◽  
Thierry Alpettaz ◽  
Sylvie Chatain ◽  
Christian Chatillon

For very high temperature reactors, the high level operating temperature of the fuel materials in normal and accidental conditions requires studying the possible chemical interaction between the UO2 fuel kernel and the surrounding structural materials (C, SiC) that could damage the tristructural isotropic particle. The partial pressures of the gaseous carbon oxides formed at the fuel (UO2)-buffer (C) interface leading to the build up of the internal pressure in the particle have to be predicted. A good knowledge of the phase diagram and thermodynamic properties of the uranium-carbon-oxygen (UCO) system is also required to optimize the fabrication process of “UCO” kernels made of a mixture of UO2 and UC2. Thermodynamic calculations using the FUELBASE database dedicated to Generation IV fuels (Guéneau, Chatain, Gossé, Rado, Rapaud, Lechelle, Dumas, and Chatillon, 2005, “A Thermodynamic Approach for Advanced Fuels of Gas Cooled Reactors,” J. Nucl. Mater., 344, pp. 191–197) allow predicting the phase equilibria involving carbide and/or oxycarbide phases at high temperature. Very high levels of CO(g) and CO2(g) equilibrium pressures are obtained above the UO2±x fuel in equilibrium with carbon that could lead to the failure of the particle in case of high oxygen stoichiometry of the uranium dioxide. To determine the deviation from thermodynamic equilibrium, measurements of the partial pressures of CO(g) and CO2(g) resulting from the UO2/C interaction have been performed by high temperature mass spectrometry on two types of samples: (i) pellets made of a mixture of UO2 and C powders or (ii) UO2 kernels embedded in carbon powder. Kinetics of the CO(g) and CO2(g) as a function of time and temperature was determined. The measured pressures are significantly lower than the equilibrium ones predicted by thermodynamic calculations. The major gaseous product is always CO(g), which starts to be released at 1473 K. From the analysis of the partial pressure profiles as a function of time and temperature, rates of CO(g) formation have been assessed. The influence of the different geometries of the samples is shown. The factors that limit the gas release can be related to interface or diffusion processes as a function of the type of sample. The present results show the utmost importance of kinetic factors that govern the UO2/C interaction.


2012 ◽  
Vol 251 ◽  
pp. 78-83 ◽  
Author(s):  
G. Cao ◽  
S.J. Weber ◽  
S.O. Martin ◽  
M.H. Anderson ◽  
K. Sridharan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document