Higher-Order Boundary Condition Perturbation Theory for the Diffusion Approximation

2000 ◽  
Vol 136 (1) ◽  
pp. 15-33 ◽  
Author(s):  
Michael Scott McKinley ◽  
Farzad Rahnema
2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Ryuichiro Kitano ◽  
Hiromasa Takaura ◽  
Shoji Hashimoto

Abstract We perform a numerical computation of the anomalous magnetic moment (g − 2) of the electron in QED by using the stochastic perturbation theory. Formulating QED on the lattice, we develop a method to calculate the coefficients of the perturbative series of g − 2 without the use of the Feynman diagrams. We demonstrate the feasibility of the method by performing a computation up to the α3 order and compare with the known results. This program provides us with a totally independent check of the results obtained by the Feynman diagrams and will be useful for the estimations of not-yet-calculated higher order values. This work provides an example of the application of the numerical stochastic perturbation theory to physical quantities, for which the external states have to be taken on-shell.


1983 ◽  
Vol 61 (11) ◽  
pp. 1479-1485 ◽  
Author(s):  
I. D. Cox ◽  
W. E. Hagston ◽  
B. J. Holmes

Damping theory of an open system S is usually formulated in terms of projection operators which introduce nonuniqueness into the analysis. An insight into the nature of the approximations that arise from this aspect of the formalism is revealed by considering systems of varying complexity. This leads to the conclusion that the results of higher order perturbation theory approximations may not be meaningful.


2009 ◽  
Vol 57 (5-7) ◽  
pp. 678-683
Author(s):  
C. Schmidt-Colinet

2014 ◽  
Vol 35 ◽  
pp. 1460442
Author(s):  
DIOGO BOITO

In the extraction of αs from hadronic τ decay data several moments of the spectral functions have been employed. Furthermore, different renormalization group improvement (RGI) frameworks have been advocated, leading to conflicting values of αs. Recently, we performed a systematic study of the perturbative behavior of these moments in the context of the two main-stream RGI frameworks: Fixed Order Perturbation Theory (FOPT) and Contour Improved Perturbation Theory (CIPT). The yet unknown higher order coefficients of the perturbative series were modelled using the available knowledge of the renormalon singularities of the QCD Adler function. We were able to show that within these RGI frameworks some of the commonly employed moments should be avoided due to their poor perturbative behavior. Furthermore, under reasonable assumptions about the higher order behavior of the perturbative series FOPT provides the preferred RGI framework.


2014 ◽  
Vol 11 (S308) ◽  
pp. 119-120
Author(s):  
Takayuki Tatekawa ◽  
Shuntaro Mizuno

AbstractZel'dovich proposed Lagrangian perturbation theory (LPT) for structure formation in the Universe. After this, higher-order perturbative equations have been derived. Recently fourth-order LPT (4LPT) have been derived by two group. We have shown fifth-order LPT (5LPT) In this conference, we notice fourth- and more higher-order perturbative equations. In fourth-order perturbation, because of the difference in handling of spatial derivative, there are two groups of equations. Then we consider the initial conditions for cosmological N-body simulations. Crocce, Pueblas, and Scoccimarro (2007) noticed that second-order perturbation theory (2LPT) is required for accuracy of several percents. We verify the effect of 3LPT initial condition for the simulations. Finally we discuss the way of further improving approach and future applications of LPTs.


Sign in / Sign up

Export Citation Format

Share Document