Effects and Modeling of Power History in Thorium-Based Fuels in Pressure-Tube Heavy Water Reactors

2016 ◽  
Vol 182 (3) ◽  
pp. 263-286 ◽  
Author(s):  
Blair P. Bromley ◽  
Geoffrey W. R. Edwards ◽  
Pranavan Sambavalingam
2016 ◽  
Vol 5 (1) ◽  
pp. 107-119 ◽  
Author(s):  
Blair Patrick Bromley ◽  
Geoffrey W.R. Edwards ◽  
Pranavan Sambavalingam

Lattice and core physics modeling and calculations have been performed to quantify the impact of power/flux levels on the reactivity and achievable burnup for 35-element fuel bundles made with Pu/Th or U-233/Th. The fissile content in these bundles has been adjusted to produce on the order of 20 MWd/kg burnup in homogeneous cores in a 700 MWe-class pressure-tube heavy water reactor, operating on a once-through thorium cycle. Results demonstrate that the impact of the power/flux level is modest for Pu/Th fuels but significant for U-233/Th fuels. In particular, high power/flux reduces the breeding and burnup potential of U-233/Th fuels. Thus, there may be an incentive to operate reactors with U-233/Th fuels at a lower power density or to develop alternative refueling schemes that will lower the time-average specific power, thereby increasing burnup.


Sign in / Sign up

Export Citation Format

Share Document