Numerical Solution of the Time-Dependent Multigroup Diffusion Equations

1968 ◽  
Vol 31 (2) ◽  
pp. 304-313 ◽  
Author(s):  
J. Barclay Andrews ◽  
K. F. Hansen
2020 ◽  
Vol 18 (1) ◽  
pp. 1552-1564
Author(s):  
Huimin Tian ◽  
Lingling Zhang

Abstract In this paper, the blow-up analyses in nonlocal reaction diffusion equations with time-dependent coefficients are investigated under Neumann boundary conditions. By constructing some suitable auxiliary functions and using differential inequality techniques, we show some sufficient conditions to ensure that the solution u ( x , t ) u(x,t) blows up at a finite time under appropriate measure sense. Furthermore, an upper and a lower bound on blow-up time are derived under some appropriate assumptions. At last, two examples are presented to illustrate the application of our main results.


Author(s):  
Jyoti Talwar ◽  
R. K. Mohanty

In this article, we discuss a new smart alternating group explicit method based on off-step discretization for the solution of time dependent viscous Burgers' equation in rectangular coordinates. The convergence analysis for the new iteration method is discussed in details. We compared the results of Burgers' equation obtained by using the proposed iterative method with the results obtained by other iterative methods to demonstrate computationally the efficiency of the proposed method.


1979 ◽  
Vol 43 (7) ◽  
pp. 512-515 ◽  
Author(s):  
Vida Maruhn-Rezwani ◽  
Norbert Grün ◽  
Werner Scheid

Author(s):  
Yuming Qin ◽  
Bin Yang

In this paper, we prove the existence and regularity of pullback attractors for non-autonomous nonclassical diffusion equations with nonlocal diffusion when the nonlinear term satisfies critical exponential growth and the external force term $h \in L_{l o c}^{2}(\mathbb {R} ; H^{-1}(\Omega )).$ Under some appropriate assumptions, we establish the existence and uniqueness of the weak solution in the time-dependent space $\mathcal {H}_{t}(\Omega )$ and the existence and regularity of the pullback attractors.


Sign in / Sign up

Export Citation Format

Share Document