Computational Efficiency of Some Numerical Methods for the Multigroup Discrete Ordinates Solution of Stationary Boltzmann Equations for Neutrons and Gamma Rays in Slab Geometry

1982 ◽  
Vol 82 (4) ◽  
pp. 448-457
Author(s):  
P. Barbucci ◽  
F. Di Pasquantonio
Author(s):  
Sauro Succi

This chapter provides a bird’s eye view of the main numerical particle methods used in the kinetic theory of fluids, the main purpose being of locating Lattice Boltzmann in the broader context of computational kinetic theory. The leading numerical methods for dense and rarified fluids are Molecular Dynamics (MD) and Direct Simulation Monte Carlo (DSMC), respectively. These methods date of the mid 50s and 60s, respectively, and, ever since, they have undergone a series of impressive developments and refinements which have turned them in major tools of investigation, discovery and design. However, they are both very demanding on computational grounds, which motivates a ceaseless demand for new and improved variants aimed at enhancing their computational efficiency without losing physical fidelity and vice versa, enhance their physical fidelity without compromising computational viability.


Author(s):  
Iram B. Rivas Ortiz ◽  
Dany S. Dominguez ◽  
Carlos R. García Hernández ◽  
Susana M. Iglesias

MATEMATIKA ◽  
2019 ◽  
Vol 35 (3) ◽  
Author(s):  
Nor Afifah Hanim Zulkefli ◽  
Yeak Su Hoe ◽  
Munira Ismail

In numerical methods, boundary element method has been widely used to solve acoustic problems. However, it suffers from certain drawbacks in terms of computational efficiency. This prevents the boundary element method from being applied to large-scale problems. This paper presents proposal of a new multiscale technique, coupled with boundary element method to speed up numerical calculations. Numerical example is given to illustrate the efficiency of the proposed method. The solution of the proposed method has been validated with conventional boundary element method and the proposed method is indeed faster in computation.


2018 ◽  
Author(s):  
Xiang Chen ◽  
Decheng Wan

The Moving Particle Semi-implicit (MPS) method has been proven effective to simulate violent flows such as dam-break flow, liquid sloshing and so on. But the low computational efficiency is one disadvantage of MPS. In the field of scientific computations, GPU based acceleration technique is widely applied to reduce the computation time of various numerical methods. In this paper, an in-house solver MPSGPU-SJTU is developed based on modified MPS method and GPU acceleration technique. A three-dimensional (3-D) dam-break flow is simulated by present solver and the validity and accuracy of GPU code are investigated by comparing the results with those by other researches. By comparisons, the flow field of GPU-based calculation is in better agreement with the experiment. In addition, the computation times of GPU and CPU solvers are compared to demonstrate the effect of GPU acceleration technique on the computational efficiency of MPS method.


Sign in / Sign up

Export Citation Format

Share Document