Verification and Validation of Evaluation Procedures for Local Wall Thinning Due to Flow-Accelerated Corrosion and Liquid Droplet Impingement

2012 ◽  
Vol 178 (3) ◽  
pp. 280-297 ◽  
Author(s):  
Shunsuke Uchida ◽  
Masanori Naitoh ◽  
Hidetoshi Okada ◽  
Taku Ohira ◽  
Seiichi Koshizuka ◽  
...  
Author(s):  
Naoya Tada ◽  
Makoto Uchida ◽  
Manabu Nohara

Local wall thinning is one of serious problems in aged power generating plants and is known to occur mainly by Flow Accelerated Corrosion (FAC) and Liquid Droplet Impingement (LDI) erosion. As the thinning grows inside the pipes, it is difficult to detect and evaluate it from the outer surface of pipe. The direct-current potential difference method (DC-PDM) is thought to be a suitable non-destructive technique to monitor the initiation and growth of these damages. In this study, an approximate analysis method of the potential difference around a semi-ellipsoidal thinning on the back surface of flat plate is presented and the accuracy is discussed based on the results obtained by the finite element analyses.


Author(s):  
Toshihiko Shakouchi ◽  
Takayuki Suzuki ◽  
Hideki Yuya ◽  
Masaki Naruse ◽  
Koichi Tsujimoto ◽  
...  

In a piping system of power plant, pipe wall thinning by Flow Accelerated Corrosion, FAC, Liquid Droplet Impingement Erosion, LDI, and Cavitation Erosion, C/E, are very serious problems because they give a damage and lead to the destructtion of the piping system[1]–[6]. In this study, the pipe wall thinning by FAC in the downstream of orifice nozzle, flow meter, is examined. Namely, the characteristics of FAC, generation mechanism, and prediction of the thinning and the reduction are made clear by experimental analysis. As a results, it was made clear that (1) the thinning is occurred mainly according to the size of the pressure fluctuation p′ on the pipe wall and the thinning can be estimated by it, and (2) the suppression of p′ can be realized by replacing the orifice to a taper shaped one having an angle to the upstream.


Author(s):  
Kunio Hasegawa ◽  
Toshiyuki Meshii ◽  
Douglas A. Scarth

One of the more common modes of degradation in power plant piping has been wall thinning due to erosion-corrosion or flow-accelerated corrosion. Extensive work has been performed to understand flow-accelerated corrosion mechanisms and develop fracture criteria of locally thinned pipes, since the tragic events at Surry Unit 2 and Mihama Unit 3. A large number of tests have been performed on carbon steel pipes, elbows and tees with local wall thinning. In addition, the American Society of Mechanical Engineers Boiler and Pressure Vessel Code provides procedures in Code Case N-597-2 for evaluation of wall thinning in pipes. This paper provides validation of the evaluation procedures in Code Case N-597-2 by comparing with the field rupture data and pipe burst test data. The allowable wall thinning from the Code Case N-597-2 procedures is shown to maintain adequate margins against rupture.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Kunio Hasegawa ◽  
Toshiyuki Meshii ◽  
Douglas A. Scarth

One of the more common modes of degradation in power plant piping has been wall thinning due to erosion-corrosion or flow-accelerated corrosion. Extensive work has been performed to understand flow-accelerated corrosion mechanisms and develop fracture criteria of locally thinned pipes since the tragic events at Surry Unit 2 and Mihama Unit 3. A large number of tests have been performed on carbon steel pipes, elbows, and tees with local wall thinning. In addition, the American Society of Mechanical Engineers Boiler and Pressure Vessel Code provides procedures in Code Case N-597-2 for the evaluation of wall thinning in pipes. This paper provides validation of the evaluation procedures in Code Case N-597-2 by comparing with the field rupture data and pipe burst test data. The allowable wall thinning from the Code Case N-597-2 procedures is shown to maintain adequate margins against rupture.


2012 ◽  
Vol 180 (1) ◽  
pp. 65-77 ◽  
Author(s):  
Shunsuke Uchida ◽  
Masanori Naitoh ◽  
Hidetoshi Okada ◽  
Hiroaki Suzuki ◽  
Soji Koikari ◽  
...  

Author(s):  
Douglas A. Scarth ◽  
Michael Davis ◽  
Phil Rush ◽  
Steven X. Xu

Code Case N-597-2 provides procedures and acceptance criteria for the evaluation of piping items subjected to wall thinning mechanisms such as flow-accelerated corrosion (FAC). The acceptance criteria ensure that margins equivalent to those of the ASME B&PV Code are maintained. Subsequent to the publication of Code Case N-597-2, the U.S. Nuclear Regulatory Commission (NRC) found the Code Case conditionally acceptable. A number of task items have been undertaken by the ASME Section XI Working Group on Pipe Flaw Evaluation (WGPFE) to address the NRC conditions. A 2006 ASME Pressure Vessels and Piping (PVP) Division conference paper was published to provide an expanded explanation of the technical basis for Code Case N-597-2. A 2009 PVP paper was published to provide results of validation of evaluation procedures and acceptance criteria in Code Case N-597-2 against experimental and historic wall thinning events. More recently, revisions to Code Case N-597-2 have been made and were proposed as N-597-3. Significant changes have been made in the proposed revised Code Case to clarify the technical requirements and address the NRC concerns over N-597-2. The technical basis for revising Code Case N-597-2 is provided in this paper.


Author(s):  
Yogendra S. Garud

Wall thinning in pressure retaining components, especially due to the flow-accelerated corrosion, has been a significant factor affecting the safety and unplanned system downtimes. On the other hand, overestimating the impact of possible wall thinning often leads to unnecessary or expensive inspections and replacements. The simplified or quick (short-cut) methods of analysis and prediction often lack the requisite degree of accuracy and confidence. This paper presents a few techniques for better analysis of the wall thinning data to address these issues. These techniques make use of the statistical methods, pattern recognition, and optimization to perform a robust data filtering and thinning rate estimation that accounts for measurement uncertainty. The techniques are discussed with application to a large database and an inspection program. The impact of these analytical improvements is presented in comparison with results of the simplified method of analysis. The results include both the margin on remaining life and the projected wall thinning rates, with implications for inspections.


Author(s):  
Kunio Hasegawa ◽  
Yinsheng Li ◽  
Bostjan Bezensek ◽  
Phuong H. Hoang ◽  
Howard J. Rathbun

Piping components in power plants may experience combined bending and torsion moments during operation. There is a lack of guidance for pipe evaluation for pipes with local wall thinning flaws under the combined bending and torsion moments. ASME B&PV Code Section XI Working Group is currently developing fully plastic bending pipe evaluation procedures for pressurized piping components containing local wall thinning subjected to combined torsion and bending moments. Using elastic fully plastic finite element analyses, plastic collapse bending moments under torsions were obtained for 4 (114.3) to 24 (609.6) inch (mm) diameter pipes with various local wall thinning flaw sizes. The objective of this paper is to introduce an equivalent moment, which combines torsion and bending moments by a vector summation, and to establish the applicable range of wall thinning lengths, angles and depths, where the equivalent moments are equal to pure bending moments.


Sign in / Sign up

Export Citation Format

Share Document