Volume 1: Codes and Standards
Latest Publications


TOTAL DOCUMENTS

119
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791845981

Author(s):  
Zhiwei Chen ◽  
Caifu Qian ◽  
Guoyi Yang ◽  
Xiang Li

The test of austenitic stainless steel specimens with strain control mode of pre-strain was carried out. The range of pre-strain is 4%, 5%, 6%, 7%, 8%, 9% and 10% on austenitic stainless steel specimens, then tensile testing of these samples was done and their mechanical properties after pre-strain were gotten. The results show that the pre-strain has little effect on tensile strength, and enhances the yield strength more obviously. According to the experimental data, we get a relational expression of S30408 between the value of yield strength and pre-strain. We can obtain several expressions about different kinds of austenitic stainless steel by this way. It is convenient for designers to get the yield strength of austenitic stainless steel after pre-strain by the value of pre-strain and the above expression.



Author(s):  
R. Adibi-Asl ◽  
Wolf Reinhardt

The classical approaches in shakedown analysis are based on the assumption that the stresses are eventually within the elastic range of the material everywhere in a component (elastic shakedown). Therefore, these approaches are not very useful to predict the ratcheting limit (ratchet limit) of a cracked component/structure in which the magnitude of stress locally exceeds the elastic range at any load, although in reality the configuration will certainly permit plastic shakedown. The Non-Cyclic Method (NCM) has been proposed recently to determine both the elastic and the plastic ratchet boundary of a component or structure under cyclic loading by generalizing the static shakedown theorem (Melan’s theorem). The proposed method is based on decomposing the loading into mean (time invariant) and fully reversed components. When a cracked structure is subjected to cyclic loading, the crack and its vicinity behave differently (local) than the rest of the structure (global). The crack may propagate during the application of cyclic loading. This will affect both local and global behavior of the cracked structure. This paper investigates global and local ratcheting of the cracked structures using the NCM and fracture mechanic parameters.



Author(s):  
Kunio Hasegawa ◽  
Yinsheng Li ◽  
Bostjan Bezensek ◽  
Phuong H. Hoang ◽  
Howard J. Rathbun

Piping components in power plants may experience combined bending and torsion moments during operation. There is a lack of guidance for pipe evaluation for pipes with local wall thinning flaws under the combined bending and torsion moments. ASME B&PV Code Section XI Working Group is currently developing fully plastic bending pipe evaluation procedures for pressurized piping components containing local wall thinning subjected to combined torsion and bending moments. Using elastic fully plastic finite element analyses, plastic collapse bending moments under torsions were obtained for 4 (114.3) to 24 (609.6) inch (mm) diameter pipes with various local wall thinning flaw sizes. The objective of this paper is to introduce an equivalent moment, which combines torsion and bending moments by a vector summation, and to establish the applicable range of wall thinning lengths, angles and depths, where the equivalent moments are equal to pure bending moments.



Author(s):  
Timothy J. Griesbach ◽  
Dilip Dedhia ◽  
David O. Harris ◽  
Nathaniel G. Cofie ◽  
Kyle Amberge ◽  
...  

Thermal aging of cast austenitic stainless steel (CASS) piping is a concern for long-term operation of nuclear power plants. Traditional conservative deterministic fracture mechanics analyses lead to tolerable crack sizes well below the sizes that are readily detectable in these large-grained materials. This is largely due to the conservative treatment of the scatter in material properties and the imposition of multipliers (structural factors) on the applied loads. In order to account for the scatter in the tensile and fracture toughness properties that enter into the analysis, a probabilistic approach is taken. Application of the probabilistic fracture mechanics (PFM) model to representative problems has led to questions regarding the dominant random variables and the influence of the tails of their distributions on computed failure probability. The purpose of this paper is to report the results of a study to identify the important random variables in the PFM model and to investigate the influence of the distribution type on the computed failure probability. Application of the PFM model to a representative piping problem to compute the depth of a part-through part-circumferential crack that will fail with a defined probability (10−6 for example) revealed that the fracture toughness was not a dominant variable and the distribution of the toughness did not strongly affect the results. In contrast to this, the flow strength (which enters into the calculation of the applied crack driving force — J) was important in that low flow strength was controlling the low probability failures in the Monte Carlo simulation. Hence, the low-end tail of the flow strength distribution was influential. Various types of distribution of flow strength consistent with the available data were considered. It was found that the distribution type has a marked, but not overwhelming, effect on the crack depth that would fail with a given probability. From this it is concluded that the PFM model is quite robust, in that it is not highly sensitive to uncertainties in the dominant input distributions.



Author(s):  
Kiminobu Hojo ◽  
Daigo Watanabe ◽  
Shinichi Kawabata ◽  
Yasufumi Ametani

A lot of applications of elastic plastic FE analysis to flawed structural fracture behaviors of mode I have been investigated. On the other hand the analysis method has not been established for the case of the excessive cyclic torsion loading with mode II or III fracture. The authors tried simulating the fracture behavior of a cylinder-shaped specimen with a through-walled circumferential flaw subjected to excessive monotonic or cyclic loading by using elastic plastic FE analysis. Chaboche constitutive equation of the used FE code Abaqus was applied to estimate the elastic plastic cyclic behavior. As a result in the case of monotonic loading without crack extension, the relation of torque-rotation angle of the experiment was estimated well by the simulation. Also J-integral by the Abaqus’ function agreed with a simplified J-equation using the calculated torque-rotation angle relation. On the other hand under load controlled cyclic loading associated with ductile crack growth, the calculated torque-rotation angle relation did not agree with the experimental one because of high sensitivity of the used stress-strain curve. J-integral from Abaqus code did not increase regardless of the accumulated crack growth and plastic zone. Several simplified ΔJ calculations tried to explain the experimental ductile crack growth and it seemed that da/dN-ΔJ relation follows the Paris’ law. From these examinations an estimation procedure of the structures under excessive cyclic loading was proposed.



Author(s):  
David J. Dewees ◽  
Phillip E. Prueter ◽  
Seetha Ramudu Kummari

Modeling of cyclic elastic-plastic material behavior (hardening) has been widely identified as a critical factor in the finite element (FE) simulation of weld residual stresses. The European Network on Neutron Techniques Standardization for Structural Integrity (NeT) Project has provided in recent years both standard test cases for simulation and measurement, as well as comprehensive material characterization. This has allowed the role of hardening in simulation predictions to be isolated and critically evaluated as never before possible. The material testing information is reviewed, and isotropic, nonlinear kinematic and combined hardening models are formulated and tested. Particular emphasis is placed on material model selection for general fitness-for-service assessments, as it relates to the guidance for weld residual stress (WRS) in flaw assessments of in-service equipment in Annex E of the FFS standard, API 579-1/ASME FFS-1.



Author(s):  
Zhou Fang ◽  
Zhiping Chen ◽  
Deyu Liu ◽  
Guodong Jia ◽  
Zhe Wang

A series of seismic table tests about the large steel cylindrical liquid storage tank models with floating roof were taken in this study. Different direction seismic excitations were input to the experimental structure system under different working conditions to test and analyze the seismic response behavior. The effects of various factors, such as the liquid surface height, the floating roof, the different wave amplitudes and frequencies, as well as their combined effects to the seismic dynamic response were taken into account. Dynamic fluid pressure data was got by the tests, and a new method that rain flow counting method was used in this study, in order to consider mean pressure throughout the vibration process, the pressure amplitude and the effective amplitude of the cumulative number of cycles factors together. Through this method, the strength of the dynamic fluid pressure could be described more reasonably. In addition, the relationship between the test results and the tank uplift responses which were studied in our former work were discussed. A reliable basis could be provided for theoretical analysis, structural design and computer numerical simulation research through this investigation.



Author(s):  
Kazuya Osakabe ◽  
Koichi Masaki ◽  
Jinya Katsuyama ◽  
Genshichiro Katsumata ◽  
Kunio Onizawa

To assess the structural integrity of reactor pressure vessels (RPVs) during pressurized thermal shock (PTS) events, the deterministic fracture mechanics approach prescribed in Japanese code JEAC 4206-2007 [1] has been used in Japan. The structural integrity is judged to be maintained if the stress intensity factor (SIF) at the crack tip during PTS events is smaller than fracture toughness KIc. On the other hand, the application of a probabilistic fracture mechanics (PFM) analysis method for the structural reliability assessment of pressure components has become attractive recently because uncertainties related to influence parameters can be incorporated rationally. A probabilistic approach has already been adopted as the regulation on fracture toughness requirements against PTS events in the U.S. According to the PFM analysis method in the U.S., through-wall cracking frequencies (TWCFs) are estimated taking frequencies of event occurrence and crack arrest after crack initiation into consideration. In this study, in order to identify the conservatism in the current RPV integrity assessment procedure in the code, probabilistic analyses on TWCF have been performed for certain model of RPVs. The result shows that the current assumption in JEAC 4206-2007, that a semi-elliptic axial crack is postulated on the inside surface of RPV wall, is conservative as compared with realistic conditions. Effects of variation of PTS transients on crack initiation frequency and TWCF have been also discussed.



Author(s):  
Akihiko Hirano ◽  
Satoko Mizuta

Fatigue evaluation methods have been proposed based on environmental fatigue test results regarding parameters selected for simulating Boiling Water Reactor (BWR) and Pressurized Water Reactor (PWR) conditions. The effects of strain wave form have been discussed by comparing experimental fatigue life with predicted fatigue life evaluated by modified rate approach (MRA) method. The applicability of the MRA method has been verified extensively by the environmental fatigue tests with strain rate changing conditions consisting of combined constant strain rates. However, different results have been obtained for a sine strain wave in simulated BWR and PWR conditions. More study for evaluating the applicability of MRA method was required by evaluating with continuous strain rate conditions such as a sine wave. For the purpose of verification, two approaches were applied. One is performing the environmental fatigue tests with the sine strain wave in simulated BWR condition. The other is to evaluate the low cycle thermal fatigue test performed in simulated BWR condition because the wave form of this test contains continuous strain rate changing condition. MRA method was indicated to be applicable to predict fatigue lives under these kinds of continuous strain rate changing conditions. All of the studies including this study verifying the applicability of the MRA method were performed with small specimens having the well polished surfaces in the gage length. These results indicate that the evaluation by the MRA method includes the synergistic effect between the water environment and the transient. However, the synergistic effects with the surface roughness and the component size are not known. Design margin derived by the multiplication of the sub-factors of environment, surface roughness and component size may be conservative. The evaluation of the conservatism is considered to be beneficial.



Author(s):  
H. T. Harrison ◽  
Robert Gurdal

For Class 1 components, the consideration of the environmental effects on fatigue has been suggested to be evaluated through two different methodologies: either NUREG/CR-6909 from March 2007 or ASME-Code Case N-761 from August 2010. The purpose of this technical paper is to compare these two methods. In addition, the equations from Revision 1 of the NUREG/CR-6909 will be evaluated. For these comparisons, two stainless steel component fatigue test series with documented results are considered. These two fatigue test series are completely different from each other (applied cyclic displacements vs. insurge/outsurge types of transients). Therefore, they are producing an appropriate foundation for these comparisons. In general, the severities of the two methods are compared, where the severity is defined as the actual number of cycles from the fatigue tests, including an evaluation of the scatter, divided by the number of design cycles from the two methods. Also, how stable the methods are is being evaluated through the calculation of the coefficient of variation for each method.



Sign in / Sign up

Export Citation Format

Share Document