Optimization of the Working Process and Gas Exchange in Diesel Internal Combustion Engines

2018 ◽  
Vol 4 (1) ◽  
2019 ◽  
Vol 2 (6) ◽  
pp. 128-131
Author(s):  
Ismatov J.F.

In this paper, we analyze the obtained data on the supply of hydrogen to internal combustion engines as a supplement to binzen.On this case, The study of the features of the working process of the engine using gasoline-hydrogen fuel were stated. Conclusions were provided in the further research points of the relevant authors


2020 ◽  
Vol 103 (3) ◽  
pp. 003685042093573
Author(s):  
Huichao Shang ◽  
Li Zhang ◽  
Bin Chen ◽  
Xi Chen

Due to the enormous energy densities of liquid hydrocarbon fuels for future utilization on micro scale, there is a concern about the feasibility of scaling down reciprocating internal combustion engines from small scale to meso scale. By building a specialized test bench, the performance and combustion characteristics of a miniature internal combustion engine with a displacement of 0.99 cc were tested, and the thermodynamic simulation was carried out to achieve a more complete understanding of in-cylinder mass and energy change of the miniature internal combustion engine. The miniature internal combustion engine had higher brake-specific fuel consumption, lower thermal efficiency, lower brake mean effective pressure, and serious cyclic variation; however, friction mean effective pressure seems to be less sensitive to engine speed. Simulation results showed that the miniature internal combustion engine had a poor volumetric efficiency, which was not more than 50%. The step-by-step processes of scaling down the miniature internal combustion engine were also simulated; it was found that the maximum indicated mean effective pressure loss was due to the imperfection of gas exchange processes, and the next was the imperfection of combustion. It is considered that for the scaled-down miniature internal combustion engines, more attention should be pay on improving the processes of gas exchange and combustion, and achieving meso-scale internal combustion engines with cylinder bore less than 1 mm is thermodynamically possible in future if these imperfections, especially that of the gas exchange process, can be effectively perfected.


Author(s):  
F Payri ◽  
J M Corberán ◽  
F Boada

Some modifications to the method of characteristics for the analysis of the gas exchange process in internal combustion engines are presented in this paper. The modifications are related to the calculation of the path lines and the Riemann characteristic lines at the grid points. Regarding the path lines, the algorithm for the generation and elimination of path lines has been improved, mainly for the cases in which the fluid motion passes from being null or going out of the pipe to going into the pipe. In those cases the algorithm proposed by Benson can cause some mistakes in the entropy level field of the duct. An alternative method is proposed: the duplication ofpath lines. The other modifcation proposed is related to assuming a linear interpolation for the pressure and the volume flowrate between the nearest grid points, rather than assuming a linear interpolation of the value of the Riemann characteristics. These modijcations substantially improve the results obtained in the calculation of the fluid flow in manifolds of reciprocating internal combustion engines.


Author(s):  

The article discusses the issue of a quantitative computational assessment of the efficiency of the thermal cycle of a piston internal combustion engine based on the values of the effective and indicator efficiency. A simplified technique for the operational assessment of the efficiency of the thermal cycle of a piston internal combustion engine is proposed. The technique is based on a mathematical description of thermodynamic processes occurring during the development of the thermal cycle of an engine with ignition of the working mixture from compression (diesel engine), which allows it to be expanded to new engines, including those operating under electronic control. Keywords heat cycle; the working process; diesel; heat content of the working fluid; expansion


2021 ◽  
Vol 20 (3) ◽  
pp. 97-109
Author(s):  
V. V. Biryuk ◽  
A. A. Gorshkalev ◽  
M. O. Zakharov ◽  
V. L. Larin

On the basis of the available theoretical calculations, methods for calculating the working process and power characteristics of internal combustion engines and the experimental studies carried out, a method for calculating the working process for small-sized two-stroke internal combustion engines was developed and tested. In the course of this work, the following results were obtained: the parameters of the working process and power characteristics of a small two-stroke internal combustion engine; the parameters obtained by calculation during the study of the Evolution 20GX2 engine were compared with the results of an experimental study. According to the results of the comparison, deviations in the values of the parameters of the engine under study from the results of the experimental study at the maximum power and maximum speed modes were identified.


Sign in / Sign up

Export Citation Format

Share Document