A general class of latent variable models for ordinal manifest variables with covariate effects on the manifest and latent variables

2003 ◽  
Vol 56 (2) ◽  
pp. 337-357 ◽  
Author(s):  
Irini Moustaki
2010 ◽  
Vol 33 (2-3) ◽  
pp. 166-166 ◽  
Author(s):  
Peter C. M. Molenaar

AbstractCramer et al. present an original and interesting network perspective on comorbidity and contrast this perspective with a more traditional interpretation of comorbidity in terms of latent variable theory. My commentary focuses on the relationship between the two perspectives; that is, it aims to qualify the presumed contrast between interpretations in terms of networks and latent variables.


2019 ◽  
Author(s):  
Axel Mayer

Building on the stochastic theory of causal effects and latent state-trait theory, this article shows how a comprehensive analysis of the effectiveness of interventions can be conducted based on latent variable models. The proposed approach offers new ways to evaluate the differential effectiveness of interventions for substantive researchers in experimental and observational studies while allowing for complex measurement models. The key definitions and assumptions of the stochastic theory of causal effects are first introduced and then four statistical models that can be used to estimate various types of causal effects with latent state-trait models are developed and illustrated: The multistate effect model with and without method factors, the true-change effect model, and the multitrait effect model. All effect models with latent variables are implemented based on multigroup structural equation modeling with the EffectLiteR approach. Particular emphasis is placed on the development of models with interactions that allow for interindividual differences in treatment effects based on latent variables. Open source software code is provided for all models.


2010 ◽  
Vol 33 (2-3) ◽  
pp. 137-150 ◽  
Author(s):  
Angélique O. J. Cramer ◽  
Lourens J. Waldorp ◽  
Han L. J. van der Maas ◽  
Denny Borsboom

AbstractThe pivotal problem of comorbidity research lies in the psychometric foundation it rests on, that is, latent variable theory, in which a mental disorder is viewed as a latent variable that causes a constellation of symptoms. From this perspective, comorbidity is a (bi)directional relationship between multiple latent variables. We argue that such a latent variable perspective encounters serious problems in the study of comorbidity, and offer a radically different conceptualization in terms of a network approach, where comorbidity is hypothesized to arise from direct relations between symptoms of multiple disorders. We propose a method to visualize comorbidity networks and, based on an empirical network for major depression and generalized anxiety, we argue that this approach generates realistic hypotheses about pathways to comorbidity, overlapping symptoms, and diagnostic boundaries, that are not naturally accommodated by latent variable models: Some pathways to comorbidity through the symptom space are more likely than others; those pathways generally have the same direction (i.e., from symptoms of one disorder to symptoms of the other); overlapping symptoms play an important role in comorbidity; and boundaries between diagnostic categories are necessarily fuzzy.


Methodology ◽  
2019 ◽  
Vol 15 (Supplement 1) ◽  
pp. 15-28 ◽  
Author(s):  
Axel Mayer

Abstract. Building on the stochastic theory of causal effects and latent state-trait theory, this article shows how a comprehensive analysis of the effects of interventions can be conducted based on latent variable models. The proposed approach offers new ways to evaluate the differential effects of interventions for substantive researchers in experimental and observational studies while allowing for complex measurement models. The key definitions and assumptions of the stochastic theory of causal effects are first introduced and then four statistical models that can be used to estimate various types of causal effects with latent state-trait models are developed and illustrated: The multistate effect model with and without method factors, the true-change effect model, and the multitrait effect model. All effect models with latent variables are implemented based on multigroup structural equation modeling with the EffectLiteR approach. Particular emphasis is placed on the development of models with interactions that allow for interindividual differences in treatment effects based on latent variables. Open source software code is provided for all models.


2018 ◽  
Author(s):  
Matthew R Whiteway ◽  
Karolina Socha ◽  
Vincent Bonin ◽  
Daniel A Butts

AbstractSensory neurons often have variable responses to repeated presentations of the same stimulus, which can significantly degrade the information contained in those responses. Such variability is often shared across many neurons, which in principle can allow a decoder to mitigate the effects of such noise, depending on the structure of the shared variability and its relationship to sensory encoding at the population level. Latent variable models offer an approach for characterizing the structure of this shared variability in neural population recordings, although they have thus far typically been used under restrictive mathematical assumptions, such as assuming linear transformations between the latent variables and neural activity. Here we leverage recent advances in machine learning to introduce two nonlinear latent variable models for analyzing large-scale neural recordings. We first present a general nonlinear latent variable model that is agnostic to the stimulus tuning properties of the individual neurons, and is hence well suited for exploring neural populations whose tuning properties are not well characterized. This motivates a second class of model, the Generalized Affine Model, which simultaneously determines each neuron’s stimulus selectivity and a set of latent variables that modulate these stimulus responses both additively and multiplicatively. While these approaches can detect general nonlinear relationships in shared neural variability, we find that neural activity recorded in anesthetized primary visual cortex (V1) is best described by a single additive and single multiplicative latent variable, i.e., an “affine model”. In contrast, application of the same models to recordings in awake macaque prefrontal cortex discover more general nonlinearities to compactly describe the population response variability. These results thus demonstrate how nonlinear latent variable models can be used to describe population variability, and suggest that a range of methods is necessary to study different brain regions under different experimental conditions.


1986 ◽  
Vol 5 (3) ◽  
pp. 231-238 ◽  
Author(s):  
J. S. Tanaka ◽  
G. J. Huba

In this article, the longitudinal stability of the three second-order daydreaming factors of the Short Imaginal Processes Inventory (SIPI) was examined. The SIPI was administered twice to a sample of 112 college students. The interval between testings was approximately one month. Over this period, a statistically significant multivariate test of level differences was obtained with univariate tests revealing shifts in the means for the Positive-Constructive Daydreaming factor and for the Guilt-Fear of Failure Daydreaming Factor. Latent variable models were then used to test the stability of the SIPI domains over this period. These models demonstrated that the SIPI domains had moderately high test-retest stabilities at the level of the latent variables.


Author(s):  
Francesco Bartolucci ◽  
Silvia Pandolfi ◽  
Fulvia Pennoni

We review the discrete latent variable approach, which is very popular in statistics and related fields. It allows us to formulate interpretable and flexible models that can be used to analyze complex datasets in the presence of articulated dependence structures among variables. Specific models including discrete latent variables are illustrated, such as finite mixture, latent class, hidden Markov, and stochastic block models. Algorithms for maximum likelihood and Bayesian estimation of these models are reviewed, focusing, in particular, on the expectation–maximization algorithm and the Markov chain Monte Carlo method with data augmentation. Model selection, particularly concerning the number of support points of the latent distribution, is discussed. The approach is illustrated by summarizing applications available in the literature; a brief review of the main software packages to handle discrete latent variable models is also provided. Finally, some possible developments in this literature are suggested. Expected final online publication date for the Annual Review of Statistics and Its Application, Volume 9 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2013 ◽  
Vol 33 (10) ◽  
pp. 1723-1737 ◽  
Author(s):  
Xinyuan Song ◽  
Zhaohua Lu ◽  
Xiangnan Feng

Sign in / Sign up

Export Citation Format

Share Document