Photoinduced charge separation in a PtII acetylide donor–acceptor triad based on 2-(1-pyrazole)-pyridine modified with naphthalene mono-imide electron acceptor

2013 ◽  
Vol 85 (7) ◽  
pp. 1331-1348 ◽  
Author(s):  
Igor V. Sazanovich ◽  
Mohammed A. H. Alamiry ◽  
Anthony J. H. M. Meijer ◽  
Michael Towrie ◽  
E. Stephen Davies ◽  
...  

A class of molecular electron transfer cascades—those based on PtII complexes of 2-(1-pyrazole)-pyridine (pzpy) ligands—are reported. The synthesis of a new electron-acceptor imide-modified pzpy ligands is reported, and their application to transition-metal chemistry demonstrated by the synthesis of the PtII chloride and acetylide complexes. These donor–acceptor assemblies are promising models for investigation of photoinduced charge separation. Accordingly, picosecond time-resolved infrared (TRIR) and femtosecond transient absorption (TA) studies have been undertaken to elucidate the nature and dynamics of the lowest excited states in Pt(NAP-pyr-pyrazole)(–CC–Ph–C7H15)2. It has been established that the initial population of an MLL'CT excited state in the chromophoric [Pt(pyridine-pyrazole)(acetylide)] core is followed by an electron transfer to the naphthalimide (NAP) acceptor, forming a charge-separated state. This state is characterized by a large shift in ν(CO) vibrations of the NAP acceptor, as well as by a very intense and broad [×10 times in comparison to ν(CO)] asymmetric acetylide stretch which incorporates –CC–Pt–CC– framework and occurs at approximately 300 cm–1 lower in energy than its ground-state counterpart. In CH2Cl2 at room temperature, the charge-separated state with the lifetime of 150 ps collapses into an almost isoenergetic NAP-localized triplet state; the rate of this transformation changes upon decreasing the temperature to 263 K. This final excited state, 3NAP-(pyr-pyrazole)Pt(–CC–Ph–C7H15)2, has an unusually long, for PtII complexes, excited-state lifetime of tens of microseconds. The work demonstrates the possibility of tuning excited-state properties in this new class of PtII chromophores designed for electron-transfer cascades.

Author(s):  
Dili R. Subedi ◽  
Youngwoo Jang ◽  
Ashwin Ganesan ◽  
Sydney Schoellhorn ◽  
Ryan Reid ◽  
...  

Two types of cobalt porphyrins, viz., meso-tetrakis(tolylporphyrinato)cobalt(II), (TTP)Co (1), and meso-tetrakis(triphenylamino porphyrinato)cobalt(II), [(TPA)4P]Co, (2) were self-assembled via metal-ligand axial coordination of phenyl imidazole functionalized fulleropyrrolidine, ImC[Formula: see text] to form a new series of donor–acceptor constructs. A 1:2 complex formation with ImC[Formula: see text] was established in the case of (TTP)Co while for [(TPA)4P]Co only a 1:1 complex was possible to positively identify. The binding constants [Formula: see text] and [Formula: see text] for step-wise addition of ImC[Formula: see text] to (TTP)Co were found to be 1.07 × 105 and 3.20 × 104 M[Formula: see text], respectively. For [(TPA)4P]Co:ImC[Formula: see text], the measured [Formula: see text] values was found to be 6.48 × 104 M[Formula: see text], slightly smaller than that observed for (TTP)Co. Although both cobalt porphyrins were non-fluorescent, they were able to quench the fluorescence of ImC[Formula: see text] indicating occurrence of excited state events in the supramolecular donor-acceptor complexes. Electrochemistry coupled with spectroelectrochemistry, revealed the formation of cobalt(III) porphyrin cation instead of a cobalt(II) porphyrin radical cation, as the main product, during oxidation of phenyl imidazole coordinated cobalt porphyrin. With the help of computational and electrochemical results, an energy level diagram was constructed to witness excited state photo-events. Competitive energy and electron transfer from excited CoP to coordinated ImC[Formula: see text], and electron transfer from Im1C[Formula: see text]* to cobalt(II) porphyrin resulting into the formation of PCo[Formula: see text]:ImC[Formula: see text] charge separated state was possible to envision from the energy diagram. Finally, using femtosecond transient absorption spectroscopy and data analysis by Glotaran, it was possible to establish sequential occurrence of energy transfer and charge separation processes. The lifetime of the final charge separated state was [Formula: see text] 2 ns. A slightly better charge stabilization was observed in the case of [(TPA)4P]Co:ImC[Formula: see text] due to the presence of electron rich, peripheral triphenylamine substituents on the cobalt porphyrin.


RSC Advances ◽  
2020 ◽  
Vol 10 (34) ◽  
pp. 19861-19866
Author(s):  
Rubén Caballero ◽  
Luis David Servián ◽  
Habtom B. Gobeze ◽  
Olivia Fernandez-Delgado ◽  
Luis Echegoyen ◽  
...  

Photoinduced charge separation and dark charge recombination occurring within picoseconds is observed in newly synthesized triphenylamine–thiophene-Sc3N@Ih-C80 and triphenylamine–thiophene-C60 conjugates.


2014 ◽  
Vol 16 (47) ◽  
pp. 25775-25788 ◽  
Author(s):  
Igor V. Sazanovich ◽  
Jonathan Best ◽  
Paul A. Scattergood ◽  
Michael Towrie ◽  
Sergei A. Tikhomirov ◽  
...  

The Pt(ii)-based molecular triad engages in step-wise photoinduced charge-separation; the charge recombination occurs through-space via two distinct pathways.


2008 ◽  
pp. 4915 ◽  
Author(s):  
Safa Shoaee ◽  
Mattias P. Eng ◽  
Zesheng An ◽  
Xuan Zhang ◽  
Stephen Barlow ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document