Novel layered pesticide slow/controlled release materials -- supramolecular structure and slow release property of glyphosate intercalated layered double hydroxides

2005 ◽  
Vol 50 (8) ◽  
pp. 745 ◽  
Author(s):  
Jinhong Meng
2018 ◽  
Vol 69 (2) ◽  
pp. 321-323
Author(s):  
Georgeta Zegan ◽  
Elena Mihaela Carausu ◽  
Loredana Golovcencu ◽  
Alina Sodor Botezatu ◽  
Eduard Radu Cernei ◽  
...  

Anionic clay matrix acting as drug controlled release system have shown in last years a great potential for delivery of bioactive molecules and chemical therapeutics. This organic-inorganic nanohybrid system is high efficient offering an excellent protection of intercalated compounds from degradation. Compared to other nanoparticles used in medical area, anionic clays type layered double hydroxides have found to be biocompatible according to toxicological studies. Ampicillin containing MgAlLDHs and ZnAlLDH samples have been prepared following two routes: anion-exchange procedure and reconstruction from calcined layered double hydroxides. Solid samples have been characterized by FTIR and SEM-EDX highlighting the alteration of pristine LDHs structure when the antibiotic is introduced in the interlayer gallery.


2015 ◽  
Vol 39 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Luíz Paulo Figueredo Benício ◽  
Rejane Alvarenga Silva ◽  
Júnia Aparecida Lopes ◽  
Denise Eulálio ◽  
Rodrigo Morais Menezes dos Santos ◽  
...  

The current research aims to introduce Layered Double Hydroxides (LDH) as nanomaterials to be used in agriculture, with particular reference to its use as storage and slow release matrix of nutrients and agrochemicals for plant growing. Structural characteristics, main properties, synthesis methods and characterization of LDH were covered in this study. Moreover, some literature data have been reported to demonstrate their potential for storage and slow release of nitrate, phosphate, agrochemicals, besides as being used as adsorbent for the wastewater treatment. This research aims to expand, in near future, the investigation field on these materials, with application in agriculture, increasing the interface between chemistry and agronomy.


2016 ◽  
Vol 172 ◽  
pp. 105-108 ◽  
Author(s):  
Zhiyong Sun ◽  
Lianghua Gu ◽  
Jiyong Zheng ◽  
Jinwei Zhang ◽  
Li Wang ◽  
...  

2012 ◽  
Vol 28 (09) ◽  
pp. 2051-2056
Author(s):  
NI Zhe-Ming ◽  
◽  
LI Yuan ◽  
SHI Wei ◽  
XUE Ji-Long ◽  
...  

Author(s):  
Maarten Everaert ◽  
Erik Smolders ◽  
Mike J. McLaughlin ◽  
Ivan Andelkovic ◽  
Simon Smolders ◽  
...  

Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 183 ◽  
Author(s):  
Roger Borges ◽  
Fernando Wypych ◽  
Elodie Petit ◽  
Claude Forano ◽  
Vanessa Prevot

This study describes the behavior of potential slow-release fertilizers (SRF), prepared by the mechanochemical activation of calcined Mg2Al-CO3 or Mg2Fe-CO3 layered double hydroxides (LDH) mixed with dipotassium hydrogen phosphate (K2HPO4). The effects of LDH thermal treatment on P/K release behavior were investigated. Characterizations of the inorganic composites before and after release experiments combined X-Ray diffraction (XRD), Fourier-transform infra-red spectroscopy (FTIR), solid-state nuclear magnetic resonance (NMR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The best release profile (<75% in 28 days and at least 75% release) was obtained for MgAl/K2HPO4 (9 h milling, 2:1 molar ratio, MR). Compared to readily used K2HPO4, milling orthophosphate into LDH matrices decreases its solubility and slows down its release, with 60% and 5.4% release after 168 h for MgAl/K2HPO4 and MgFe/K2HPO4 composites, respectively. Mechanochemical addition of carboxymethylcellulose to the LDH/K2HPO4 composites leads to a noticeable improvement of P release properties.


Sign in / Sign up

Export Citation Format

Share Document