Dynamics of species diversity and characteristics of halophytic plant communities around saline lakes in arid and semi-arid regions of Inner Mongolia

2007 ◽  
Vol 15 (3) ◽  
pp. 271 ◽  
Author(s):  
Du Quanying
2018 ◽  
Vol 626 ◽  
pp. 1193-1199 ◽  
Author(s):  
Zhi-Ping Wang ◽  
Lin Zhang ◽  
Bin Wang ◽  
Long-Yu Hou ◽  
Chun-Wang Xiao ◽  
...  

2007 ◽  
Vol 34 (2) ◽  
pp. 95-97 ◽  
Author(s):  
GANG LI ◽  
GAOMING JIANG ◽  
YONGGENG LI ◽  
MEIZHEN LIU ◽  
YU PENG ◽  
...  

The world's arid and semi-arid regions are severely affected by desertification. In China, wind erosion, water erosion, soil salinization and the freezing and melting processes have contributed to 2.64 million km2 of desertified land, covering 27.5% of the country's land surface (State Forestry Administration, Peoples' Republic of China 2005). Although climate change could be a reason for desertification, anthropogenic factors such as overgrazing and overcultivation also contribute to degradation in grassland areas (Millennium Ecosystem Assessment 2005; Zheng et al. 2006). The Chinese government has adopted afforestation as the main measure to control desertification. Major projects, including the ‘Three North Shelterbelt Programme’ (also known as the ‘Green Great Wall’) and the ‘Sandstorm Source Control Project around Beijing and Tianjin’, are necessary to shield northern and eastern agricultural ecosystems against sand and dust (Zhou 2002). However, these countermeasures require substantial effort and investment, and, in the semi-arid and arid regions of Inner Mongolia, newly planted trees have often died of drought, while tree planting could also be responsible for exhausting the precious groundwater resources of these regions (Jackson et al. 2005). Alternative and more practical ways of combating desertification by using multi-disciplinary approaches observing both social and ecological principles are required. The Hunshandake Sandy Land restoration demonstration project conducted by the Chinese Academy of Sciences was an attempt to restore desertified grassland mainly through natural processes, and requiring limited investment.


2021 ◽  
Vol 9 (2) ◽  
pp. 208
Author(s):  
Xiangming Tang ◽  
Guijuan Xie ◽  
Keqiang Shao ◽  
Wei Tian ◽  
Guang Gao ◽  
...  

Due to the recent decades of climate change and intensive human activities, endorheic lakes are threatened by both salinization and eutrophication. However, knowledge of the aquatic bacterial community’s response to simultaneous increasing salinity and trophic status is still poor. To address this knowledge gap, we collected 40 surface water samples from five lakes and six rivers on the semi-arid Inner Mongolia Plateau, and investigated their bacterial communities using 16S rRNA gene-targeted amplicon sequencing. We found that bacterial species diversity significantly decreased from the mesotrophic freshwater river habitat to the eutrophic high-brackish lake habitat; salinity was more important than trophic status in explaining this decreased diversity. Salinity was the most important environmental factor in shaping community composition, while increased nitrogen loading was more important in structuring predicted functional composition. Within the lake habitats, the impact of environmental filtering on bacterial community assembly increased with the increasing salinity. The results suggested that the elevated salinity and nutrients have combined effects on the aquatic bacterial community, resulting in dramatic declines in species diversity, and promoted the importance of deterministic processes in community assembly. Our findings provide new insights into bacterial communities’ responses to the intensified climate-driven and anthropogenic environmental changes in aquatic ecosystems.


Sign in / Sign up

Export Citation Format

Share Document