scholarly journals Grand unified theories and proton decay

2018 ◽  
Vol 63 (24) ◽  
pp. 2474-2483
Author(s):  
Tianjun Li
2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Stephen F. King ◽  
Silvia Pascoli ◽  
Ye-Ling Zhou ◽  
Jessica Turner

Abstract Grand Unified Theories (GUT) predict proton decay as well as the formation of cosmic strings which can generate gravitational waves. We determine which non-supersymmetric SO(10) breaking chains provide gauge unification in addition to a gravitational signal from cosmic strings. We calculate the GUT and intermediate scales for these SO(10) breaking chains by solving the renormalisation group equations at the two-loop level. This analysis predicts the GUT scale, hence the proton lifetime, in addition to the scale of cosmic string generation and thus the associated gravitational wave signal. We determine which SO(10) breaking chains survive in the event of the null results of the next generation of gravitational waves and proton decay searches and determine the correlations between proton decay and gravitational waves scales if these observables are measured.


1981 ◽  
Vol 72 (4) ◽  
pp. 185-385 ◽  
Author(s):  
Paul Langacker

2001 ◽  
Vol 16 (supp01b) ◽  
pp. 846-848
Author(s):  
RODOVAN DERMÍŠEK

We calculate the proton lifetime in a SO(10) supersymmetric grand unified theory [SUSY GUT] with U(2) family symmetry. This model fits the low energy data, including the recent data for neutrino oscillations. We discuss the predictions of this model for the proton lifetime in light of recent SuperKamiokande results which significantly constrain the SUSY parameter space of the model.


2021 ◽  
Vol 126 (2) ◽  
Author(s):  
Stephen F. King ◽  
Silvia Pascoli ◽  
Jessica Turner ◽  
Ye-Ling Zhou

Author(s):  
Steven E. Vigdor

Chapter 4 deals with the stability of the proton, hence of hydrogen, and how to reconcile that stability with the baryon number nonconservation (or baryon conservation) needed to establish a matter–antimatter imbalance in the infant universe. Sakharov’s three conditions for establishing a matter–antimatter imbalance are presented. Grand unified theories and experimental searches for proton decay are described. The concept of spontaneous symmetry breaking is introduced in describing the electroweak phase transition in the infant universe. That transition is treated as the potential site for introducing the imbalance between quarks and antiquarks, via either baryogenesis or leptogenesis models. The up–down quark mass difference is presented as essential for providing the stability of hydrogen and of the deuteron, which serves as a crucial stepping stone in stellar hydrogen-burning reactions that generate the energy and elements needed for life. Constraints on quark masses from lattice QCD calculations and violations of chiral symmetry are discussed.


Sign in / Sign up

Export Citation Format

Share Document