mass difference
Recently Published Documents


TOTAL DOCUMENTS

700
(FIVE YEARS 74)

H-INDEX

39
(FIVE YEARS 5)

2022 ◽  
Author(s):  
◽  
R. Aaij ◽  
C. Abellán Beteta ◽  
T. Ackernley ◽  
B. Adeva ◽  
...  

AbstractMesons comprising a beauty quark and strange quark can oscillate between particle ($${B}_{\mathrm{s}}^{0}$$ B s 0 ) and antiparticle ($${\overline{B}}_{\mathrm{s}}^{0}$$ B ¯ s 0 ) flavour eigenstates, with a frequency given by the mass difference between heavy and light mass eigenstates, Δms. Here we present a measurement of Δms using $${B}_{\mathrm{s}}^{0}\to {D}_{\mathrm{s}}^{-}$$ B s 0 → D s − π+ decays produced in proton–proton collisions collected with the LHCb detector at the Large Hadron Collider. The oscillation frequency is found to be Δms = 17.7683 ± 0.0051 ± 0.0032 ps−1, where the first uncertainty is statistical and the second is systematic. This measurement improves on the current Δms precision by a factor of two. We combine this result with previous LHCb measurements to determine Δms = 17.7656 ± 0.0057 ps−1, which is the legacy measurement of the original LHCb detector.


2021 ◽  
Vol 18 (3) ◽  
pp. 285-297
Author(s):  
Satish Arvind Ahire ◽  
Ashwini Ashok Bachhav ◽  
Thansingh Bhavsing Pawar ◽  
Arun Vitthal Patil ◽  
Swapnil Sampatrao Shendge ◽  
...  

In the present investigation we have fabricated the cerium dioxide (CeO2) nanoparticles by green route. While preparing the cerium dioxide nanoparticles by co-precipitation method, Neem leaf extract mixed into the precursor of cerium. The synthesized nanoparticles of CeO2 were used for the preparation of thick film sensor by using screen printing strategy. The fabricated CeO2 sensor was characterized by XRD, SEM, EDS and TEM techniques. The structural characteristics investigated by x-ray diffraction technique (XRD). XRD confirms the formation of cubic lattice of CeO2 material. The surface, texture, porosity characteristics were investigated from SEM analysis, while chemical composition of the material was analysed by EDS technique. The transmission electron microscopy (TEM) confirms the formation cubic lattice of the cerium dioxide material. The thickness of the films was calculated from mass difference method, the prepared film sensors belong to thick region. The fabricated material CeO2 sensor was applied as gas sensor to sense the gases such as LPG, petrol vapors (PV), toluene vapors (TV) and CO2. The CeO2 sensor showed excellent gas response for LPG and PV, nearly 93.20 % and 78.23 % gas response. The rapid response and recovery of the prepared sensors was observed at the tested gases. CeO2 material also employed for antibacterial study at several pathogenic organism such as pseudomonas, staphylococcus aureus and salmonella typhae. From antibacterial study it was observed that the material is capable of inhibiting the growth of these pathogenic microbes.


Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 665
Author(s):  
Hossameldeen Mohamed ◽  
Xavier Romão

The proposed study develops fragility functions for non-seismically designed reinforced concrete structures considering different pounding configurations. The study addresses an existing research gap, since large-scale seismic risk assessment studies involving the seismic performance assessment of building portfolios usually do not involve fragility functions accounting for the possibility of pounding. The selected structures include configurations involving different separation distance values and exhibiting floor-to-floor pounding, floor-to-column pounding, pounding between structures with a significant height difference, and pounding between structures with a significant mass difference. The behaviour of these pounding configurations was analysed using incremental dynamic analysis and compared with that of the corresponding control cases (i.e., individual structures with no interaction with other structures). The results indicate the type of failure mechanism that contributes to the global collapse of the different configurations and the influence of the separation distance. Results highlight the main differences between the expected performance of different pounding configurations with respect to the occurrence of the failure mechanism that governs their collapse. Finally, results indicate that large-scale seismic risk assessment studies should consider fragility functions accounting for different pounding configurations when the possibility of pounding is not negligible, except in cases involving floor-to-floor pounding.


2021 ◽  
Author(s):  
Lars Kolbowski ◽  
Swantje Lenz ◽  
Lutz Fischer ◽  
Ludwig R Sinn ◽  
Francis J O'Reilly ◽  
...  

Proteome-wide crosslinking mass spectrometry studies have coincided with the advent of MS-cleavable crosslinkers that can reveal the individual masses of the two crosslinked peptides. However, recently such studies have also been published with non-cleavable crosslinkers suggesting that MS-cleavability is not essential. We therefore examined in detail the advantages and disadvantages of using the most popular MS-cleavable crosslinker, DSSO. Indeed, DSSO gave rise to signature peptide fragments with a distinct mass difference (doublet) for nearly all identified crosslinked peptides. Surprisingly, we could show that it was not these peptide masses that proved the main advantage of MS-cleavability of the crosslinker, but improved peptide backbone fragmentation that allowed for more confident peptide identification. We also show that the more intricate MS3-based data acquisition approaches lack sensitivity and specificity, causing them to be outperformed by the simpler and faster stepped HCD method. This understanding will guide future developments and applications of proteome-wide crosslinking mass spectrometry.


2021 ◽  
Author(s):  
Denice van Herwerden ◽  
Jake O'Brien ◽  
Phil Choi ◽  
Kevin Thomas ◽  
Peter Schoenmakers ◽  
...  

Isotopologue identification or removal is a necessary step to reduce the number of features that need to be identified in samples analyzed with non-targeted analysis. Currently available approaches rely on either predicted isotopic patterns or an arbitrary mass tolerance, requiring information on the molecular formula or instrumental error, respectively. Therefore, a Naive Bayes isotopologue classification model was developed that does not depend on any thresholds or molecular formula information. This classification model uses elemental mass defects of six elemental ratios and can successfully identify isotopologues in both theoretical isotopic patterns and wastewater influent samples, outperforming one of the most commonly used approaches (i.e., 1.0033 Da mass difference method - CAMERA).


2021 ◽  
Vol 2105 (1) ◽  
pp. 012012
Author(s):  
Ioanna Papavergou ◽  
Emmanouil Vourliotis

Abstract The most recent CMS results from a search for supersymmetry (SUSY) with a compressed mass spectrum in leptonic final states will be presented. The search is targeting signatures with missing transverse momentum and two or three low-momentum (soft) leptons. The dataset used is collected by the CMS experiment during the Run–2 proton-proton collisions at s = 13 TeV at the LHC, and corresponds to an integrated luminosity of up to 137 fb−1. The observed data are found to be in agreement with the Standard Model prediction and exclusion upper limits are set on the SUSY particles production cross section. The results are interpreted in terms of electroweakino and top squark pair production. In both cases, a small mass difference between the produced SUSY particles and the lightest neutralino is considered. A wino-bino and a higgsino simplified models are used for the electroweakino interpretation. Exclusion limits at 95% confidence level are set on x ˜ 2 0 / x ˜ 1 ± masses up to 280 GeV for a mass difference between the x ˜ 2 0 / x ˜ 1 ± and the lightest neutralino of 10 GeV for the wino-bino production. In the higgsino interpretation x ˜ 2 0 / x ˜ 1 ± masses are excluded up to 210 GeV for a mass difference of 7.5 GeV and up to 150 GeV for a mass difference of 3 GeV. The results for the higgsino production are additionally interpreted in terms of a phenomenological minimal SUSY extension of the standard model, excluding the higgsino mass parameter μ up to 180 GeV for bino mass parameter M1 = 800 GeV. Upper limits at 95% confidence level are set on the top squark pair production interpretation, excluding top squark masses up to 530 GeV in the four-body top squark decay model and up to 475 GeV in the chargino-mediated decay model for a mass difference between the top squark and the lightest neutralino of 30 GeV.


2021 ◽  
pp. 0734242X2110534
Author(s):  
Denis Manuel Werner ◽  
Thomas Mütze ◽  
Urs Alexander Peuker

The use and development of lithium-ion batteries (LIBs) are promoting the technological transformation of individual mobility, consumer electronics and electric energy storage. At their end of life, the complex compounds are disposed by different recycling technologies with defined secondary raw material production. The applied depollution temperatures of the process routes influence not only the recycling efficiency but also the process expenditure, design, medium and costs. Different pretreatment strategies in terms of dismantling depth and depollution temperature are existing. Furthermore, manual and mechanical methods for cell opening are distinguished, which together with the depollution leads to a respective organic solvent evaporation. In this contribution to LIB recycling, the influence of different dismantling depths, achieved by manual cell opening, on the thermal depollution of the LIB cells regarding the mass difference originating by organic solvent evaporation are quantified, in order to determine cell and equipment properties for a safe cell opening. As a result, combinations of thermal depollution and manual cell opening are discussed regarding technical and economic feasibility. The process medium and equipment properties for a safe cell opening are determined. Furthermore, recommendations for future industrial LIB waste management are presented.


2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Jiwon Woo ◽  
Gyuhyeon Lee

Matter-dominant universe cannot be explained with the Standard Model. In order to understand why the current universe mainly consists of matter particles, scientists turned their attention to neutrino oscillations, and conducted research on the properties of the particle and its potential relationship with the matter-antimatter asymmetry observed in the universe. In this research, the probability function of a neutrino oscillation was studied for 2-neutrino case to understand neutrino oscillation in particle accelerator experiments. For a more practical study, the neutrino oscillation probability function was calculated for two neutrino experiments and was used to verify neutrino detector positions and calculated ∆m2 which is mass difference between oscillating two different neutrinos. From this work, it was understood that detectors are located at positions with the highest probability for detecting neutrino oscillations, and it was also confirmed that neutrino were oscillating from muon neutrinos to electron neutrinos in particle accelerator experiments.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5356
Author(s):  
Matija Hoić ◽  
Alen Miklik ◽  
Milan Kostelac ◽  
Joško Deur ◽  
Andreas Tissot

The paper demonstrates that the dry clutch friction plate wear rate, measured based on the plate mass difference method, exhibits a transient behavior after each change of friction interface temperature level. The effect is hypothesized to be caused by a temperature-dependent change in the moisture content/mass level in the friction material. To test this hypothesis, a series of synchronized characterization experiments have been conducted by using two friction plates, one for wear tests and the other for drying in an oven under the same temperature conditions. Based on the analysis of test results, a moisture content compensation procedure, which reduces the transient wear rate from being 100% to being 50% higher compared to stabilized wear rate, is proposed and verified. The gained insights are used to set recommendations on the organization of routine wear characterization experiments aimed at avoiding the effect of moisture content influence on the accuracy of wear measurement. The main recommendations are to minimize the number of temperature target level changes through proper design of the experiment, insert a run-in test after every long test pause, and execute a pre-heat, blind wear test at the beginning of each test day.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1921
Author(s):  
Yulian Voynikov ◽  
Paraskev Nedialkov ◽  
Reneta Gevrenova ◽  
Dimitrina Zheleva-Dimitrova ◽  
Vessela Balabanova ◽  
...  

Oleraceins are a class of indoline amide glycosides found in Portulaca oleracea L. (Portulacaceae), or purslane. These compounds are characterized by 5,6-dihydroxyindoline-2-carboxylic acid N-acylated with cinnamic acid derivatives, and many are glucosylated. Herein, hydromethanolic extracts of the aerial parts of purslane were subjected to UHPLC-Orbitrap-MS analysis, in negative ionization mode. Diagnostic ion filtering (DIF), followed by diagnostic difference filtering (DDF), were utilized to automatically filter out MS data and select plausible oleracein structures. After an in-depth MS2 analysis, a total of 51 oleracein compounds were tentatively identified. Of them, 26 had structures, matching one of the already known oleracein, and the other 25 were new, undescribed in the literature compounds, belonging to the oleracein class. Moreover, based on selected diagnostic fragment ions, clustering algorithms and visualizations were utilized. As we demonstrate, clustering methods provide valuable insights into the mass fragmentation elucidation of natural compounds in complex mixtures.


Sign in / Sign up

Export Citation Format

Share Document