Beam propagation in gradient refractive-index media

1992 ◽  
Vol 31 (25) ◽  
pp. 5201 ◽  
Author(s):  
G. N. Lawrence ◽  
S.-H. Hwang
Entropy ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 673 ◽  
Author(s):  
Qian Kong ◽  
Huimin Ying ◽  
Xi Chen

In recent years, the concept of “shortcuts to adiabaticity" has been originally proposed to speed up sufficiently slow adiabatic process in various quantum systems without final excitation. Based on the analogy between classical optics and quantum mechanics, we present a study on fast non-adiabatic compression of optical beam propagation in nonlinear gradient refractive-index media by using shortcuts to adiabaticity. We first apply the variational approximation method in nonlinear optics to derive the auxiliary equation for connecting the beam width with the refractive index of the medium. Then, the gradient refractive index is inversely designed through the perfect compression of beam width with the appropriate boundary conditions. Finally, the comparison with conventional adiabatic compression is made, showing the advantage of our shortcuts.


1997 ◽  
Vol 22 (10) ◽  
pp. 668 ◽  
Author(s):  
Jui-Hsiang Liu ◽  
Hung-Tsai Liu

2021 ◽  
Author(s):  
Omena Okpowe ◽  
Andriy Durygin ◽  
Vadym Drozd ◽  
Temitayo Olowu ◽  
Nezih Pala ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Yao Huang ◽  
Daming Wu ◽  
Dongyun Ren ◽  
Qingyun Meng ◽  
Xiaojun Di

Light scattering material with gradient refractive index was prepared under the electrical field by taking methyl methacrylate (MMA) monomer as the matrix with the addition of a little preheated styrene (ST) and peroxidation benzoin formyl (BPO). The material obtained under electrical field presented different transmittance and molecular weight at different parts of the cylindrical sample along the axis of the direction of electric field which led to the layering phenomenon and gradient refractive index. The disparity of molecular weight between different layers can be as much as 230 thousand. There were several peaks in the figure of GPC test of the sample under electric field. This proved that there were polymers with different molecular weights in the sample. Therefore, it can be concluded that electrical field has a significant effect on polymerization.


2012 ◽  
Vol 02 (03) ◽  
pp. 178-184
Author(s):  
Isnani Darti ◽  
Suhariningsih Suhariningsih ◽  
Marjono Marjono ◽  
Agus Suryanto

Sign in / Sign up

Export Citation Format

Share Document