Laser inscribed waveguide optical isolators iniron-doped lithium niobate

2021 ◽  
Author(s):  
Michael Coco ◽  
Sean McDaniel ◽  
Gary Cook
2005 ◽  
Vol 126 ◽  
pp. 101-105 ◽  
Author(s):  
B. Moulin ◽  
L. Hennet ◽  
D. Thiaudière ◽  
P. Melin ◽  
P. Simon

2011 ◽  
Vol 25 (12) ◽  
pp. 1257-1262 ◽  
Author(s):  
Xiao-Niu TU ◽  
Yan-Qing ZHENG ◽  
Hui CHEN ◽  
Hai-Kuan KONG ◽  
Jun XIN ◽  
...  

2019 ◽  
Vol 9 (3) ◽  
pp. 344-352 ◽  
Author(s):  
L.I. Stefanovich ◽  
O.Y. Mazur ◽  
V.V. Sobolev

Introduction: Within the framework of the phenomenological theory of phase transitions of the second kind of Ginzburg-Landau, the kinetics of ordering of a rapidly quenched highly nonequilibrium domain structure is considered using the lithium tantalate and lithium niobate crystals as an example. Experimental: Using the statistical approach, evolution equations describing the formation of the domain structure under the influence of a high-frequency alternating electric field in the form of a standing wave were obtained. Numerical analysis has shown the possibility of forming thermodynamically stable mono- and polydomain structures. It turned out that the process of relaxation of the system to the state of thermodynamic equilibrium can proceed directly or with the formation of intermediate quasi-stationary polydomain asymmetric phases. Results: It is shown that the formation of Regular Domain Structures (RDS) is of a threshold character and occurs under the influence of an alternating electric field with an amplitude less than the critical value, whose value depends on the field frequency. The conditions for the formation of RDSs with a micrometer spatial scale were determined. Conclusion: As shown by numerical studies, the RDSs obtained retain their stability, i.e. do not disappear even after turning off the external electric field. Qualitative analysis using lithium niobate crystals as an example has shown the possibility of RDSs formation in high-frequency fields with small amplitude under resonance conditions


1986 ◽  
Vol 22 (12) ◽  
pp. 674 ◽  
Author(s):  
G.E. Peterson ◽  
S.R. Lunt

Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 183
Author(s):  
Xing Zhu ◽  
David R. Bacon ◽  
Julien Madéo ◽  
Keshav M. Dani

The transient terahertz (THz) pulse with high peak field has become an important tool for matter manipulation, enabling many applications such as nonlinear spectroscopy, particle acceleration, and high harmonic generation. Among the widely used THz generation techniques, optical rectification in lithium niobate (LN) has emerged as a powerful method to achieve high fields at low THz frequencies, suitable to exploring novel nonlinear phenomena in condensed matter systems. In this review, we focus on introducing single- to few-cycle THz generation in LN, including the basic principles, techniques, latest developments, and current limitations. We will first discuss the phase matching requirements of LN, which leads to Cherenkov-like radiation, and the tilted pulse front (TPF) technique. Emphasis will be put on the TPF technique, which has been shown to improve THz generation efficiency, but still has many limitations. Different geometries used to produce continuous and discrete TPF will be systematically discussed. We summarize the advantages and limitations of current techniques and future trends.


2021 ◽  
Vol 127 (1) ◽  
Author(s):  
Zhi-Wei Yan ◽  
Qiang Wang ◽  
Meng Xiao ◽  
Yu-Le Zhao ◽  
Shi-Ning Zhu ◽  
...  
Keyword(s):  

2021 ◽  
Vol 574 (1) ◽  
pp. 156-163
Author(s):  
I. A. Kipenko ◽  
A. R. Akhmatkhanov ◽  
A. A. Esin ◽  
V. Ya. Shur

Sign in / Sign up

Export Citation Format

Share Document