Measurement of transient deformations using digital image correlation method and high-speed photography: application to dynamic fracture

2007 ◽  
Vol 46 (22) ◽  
pp. 5083 ◽  
Author(s):  
Madhu S. Kirugulige ◽  
Hareesh V. Tippur ◽  
Thomas S. Denney
2009 ◽  
Vol 34 (13) ◽  
pp. 1955 ◽  
Author(s):  
Min Wang ◽  
Hao Wang ◽  
Yuwan Cen

2006 ◽  
Vol 326-328 ◽  
pp. 99-102 ◽  
Author(s):  
Fu Jun Yang ◽  
Xiao Yuan He

Digital image correlation method (DICM) is described as a robust in-plane deformation measuring method due to its simple optical setup and the insensitivity against ambient noise. Based on DICM, digital speckle projection has been developed for shape measurement. This paper explores the possibilities for vibration analysis using digital speckle projection together with DICM. A digital speckle pattern, generated by computer, is projected on an object surface using an LCD projector. Then the dynamic deformation modulated speckle images are captured by a high-speed CCD camera and saved in the computer. By using the self-developed temporal sequence digital images correlation algorithm, the deformation and vibration mode can be analyzed quantitatively. The proposed method avoids using stroboscopic or laser illumination and simplifies the experimental setup for vibration measurement, while it is time-consuming thanks to calculating a large amount of correlation coefficients. The experimental performance on a harmonic-vibrating cantilever beam well demonstrates the validity of the new method.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Liyun Yang ◽  
Chenxi Ding ◽  
Renshu Yang ◽  
Zhen Lei ◽  
Jing Wang

The depth of mineral resources like coal continuously increases due to the exhaustion of shallow resources, and the characteristic of high ground stress in deep ground inevitably affects fracture of rock blasting. Combining with high-speed photography technology, the digital image correlation method (DIC) is introduced into experimental study on explosive mechanics. And strain evolution process of blasting under high stress condition is obtained by using the model experiment method. The preliminary results show that high stress condition has no obvious effects on the propagation law of blasting stress wave or its stress peak in the medium. In addition, it is found that medium in the “elastic vibration area” by conventional blast zoning is not always “elastic,” and on this basis, the concepts of “plastic area” and “quasielastic area” are put forward. The high stress condition does not influence partition range of above “plastic area” or “quasielastic area,” but in the “plastic area,” the high stress condition decreases both plastic strain value and its decay rate of relevant gauging points.


Sign in / Sign up

Export Citation Format

Share Document