Probing the local environment of green fluorescent protein (GFP) with fluorescence lifetime imaging (FLIM) and time-resolved fluorescence anisotropy imaging (tr-FAIM)

Author(s):  
K. Suhling ◽  
D.M. Davis ◽  
D. Phillips ◽  
J. Siegel ◽  
S. Lévêque-Fort ◽  
...  
Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4932 ◽  
Author(s):  
Laura Espinar-Barranco ◽  
Marta Meazza ◽  
Azahara Linares-Perez ◽  
Ramon Rios ◽  
Jose Manuel Paredes ◽  
...  

Biological samples are a complex and heterogeneous matrix where different macromolecules with different physicochemical parameters cohabit in reduced spaces. The introduction of fluorophores into these samples, such as in the interior of cells, can produce changes in the fluorescence emission properties of these dyes, caused by the specific physicochemical properties of cells. This effect can be especially intense with solvatofluorochromic dyes, where changes in the polarity environment surrounding the dye can drastically change the fluorescence emission. In this article, we studied the photophysical behavior of a new dye and confirmed the aggregation-induced emission (AIE) phenomenon with different approaches, such as by using different solvent proportions, increasing the viscosity, forming micelles, and adding bovine serum albumin (BSA), through analysis of the absorption and steady-state and time-resolved fluorescence. Our results show the preferences of the dye for nonpolar media, exhibiting AIE under specific conditions through immobilization. Additionally, this approach offers the possibility of easily determining the critical micelle concentration (CMC). Finally, we studied the rate of spontaneous incorporation of the dye into cells by fluorescence lifetime imaging and observed the intracellular pattern produced by the AIE. Interestingly, different intracellular compartments present strong differences in fluorescence intensity and fluorescence lifetime. We used this difference to isolate different intracellular regions to selectively study these regions. Interestingly, the fluorescence lifetime shows a strong difference in different intracellular compartments, facilitating selective isolation for a detailed study of specific organelles.


2010 ◽  
Vol 283 (23) ◽  
pp. 4832-4839 ◽  
Author(s):  
Victor Chernomordik ◽  
Amir H. Gandjbakhche ◽  
Moinuddin Hassan ◽  
Sinisa Pajevic ◽  
George H. Weiss

2021 ◽  
Vol 118 (22) ◽  
pp. e2104008118
Author(s):  
Galvin C.-H. Leung ◽  
Simon S.-P. Fung ◽  
Andrea E. Gallio ◽  
Robert Blore ◽  
Dominic Alibhai ◽  
...  

In addition to heme’s role as the prosthetic group buried inside many different proteins that are ubiquitous in biology, there is new evidence that heme has substantive roles in cellular signaling and regulation. This means that heme must be available in locations distant from its place of synthesis (mitochondria) in response to transient cellular demands. A longstanding question has been to establish the mechanisms that control the supply and demand for cellular heme. By fusing a monomeric heme-binding peroxidase (ascorbate peroxidase, mAPX) to a monomeric form of green-fluorescent protein (mEGFP), we have developed a heme sensor (mAPXmEGFP) that can respond to heme availability. By means of fluorescence lifetime imaging, this heme sensor can be used to quantify heme concentrations; values of the mean fluorescence lifetime (τMean) for mAPX-mEGFP are shown to be responsive to changes in free (unbound) heme concentration in cells. The results demonstrate that concentrations are typically limited to one molecule or less within cellular compartments. These miniscule amounts of free heme are consistent with a system that sequesters the heme and is able to buffer changes in heme availability while retaining the capability to mobilize heme when and where it is needed. We propose that this exchangeable supply of heme can operate using mechanisms for heme transfer that are analogous to classical ligand-exchange mechanisms. This exquisite control, in which heme is made available for transfer one molecule at a time, protects the cell against the toxic effect of excess heme and offers a simple mechanism for heme-dependent regulation in single-molecule steps.


Sign in / Sign up

Export Citation Format

Share Document