Fluorescence lifetime imaging of green fluorescent protein in a single living cell

Author(s):  
Ammasi Periasamy ◽  
Kristin K. Sharman ◽  
Ramesh C. Ahuja ◽  
Masumi Eto ◽  
David L. Brautigan
2007 ◽  
Vol 47 (supplement) ◽  
pp. S279
Author(s):  
Toshifumi Takayama ◽  
Michihiko Sato ◽  
Fumihiko Fujii ◽  
Masataka Kinjo ◽  
Zhonggang Feng ◽  
...  

2021 ◽  
Vol 118 (22) ◽  
pp. e2104008118
Author(s):  
Galvin C.-H. Leung ◽  
Simon S.-P. Fung ◽  
Andrea E. Gallio ◽  
Robert Blore ◽  
Dominic Alibhai ◽  
...  

In addition to heme’s role as the prosthetic group buried inside many different proteins that are ubiquitous in biology, there is new evidence that heme has substantive roles in cellular signaling and regulation. This means that heme must be available in locations distant from its place of synthesis (mitochondria) in response to transient cellular demands. A longstanding question has been to establish the mechanisms that control the supply and demand for cellular heme. By fusing a monomeric heme-binding peroxidase (ascorbate peroxidase, mAPX) to a monomeric form of green-fluorescent protein (mEGFP), we have developed a heme sensor (mAPXmEGFP) that can respond to heme availability. By means of fluorescence lifetime imaging, this heme sensor can be used to quantify heme concentrations; values of the mean fluorescence lifetime (τMean) for mAPX-mEGFP are shown to be responsive to changes in free (unbound) heme concentration in cells. The results demonstrate that concentrations are typically limited to one molecule or less within cellular compartments. These miniscule amounts of free heme are consistent with a system that sequesters the heme and is able to buffer changes in heme availability while retaining the capability to mobilize heme when and where it is needed. We propose that this exchangeable supply of heme can operate using mechanisms for heme transfer that are analogous to classical ligand-exchange mechanisms. This exquisite control, in which heme is made available for transfer one molecule at a time, protects the cell against the toxic effect of excess heme and offers a simple mechanism for heme-dependent regulation in single-molecule steps.


2021 ◽  
Author(s):  
Peter Linders ◽  
Martin ter Beest ◽  
Geert van den Bogaart

Many cellular processes are dependent on correct pH levels, and this is especially important for the secretory pathway. Defects in pH homeostasis in distinct organelles cause a wide range of diseases, including disorders of glycosylation and lysosomal storage diseases. Ratiometric imaging of the pH-sensitive mutant of green fluorescent protein (GFP), pHLuorin, has allowed for targeted pH measurements in various organelles, but the required sequential image acquisition is intrinsically slow and therefore the temporal resolution unsuitable to follow the rapid transit of cargo between organelles. We therefore applied fluorescence lifetime imaging microscopy (FLIM) to measure intraorganellar pH with just a single excitation wavelength. We first validated this method by confirming the pH in multiple compartments along the secretory pathway. Then, we analyze the dynamic pH changes within cells treated with Brefeldin A, a COPI coat inhibitor. Finally, we followed the pH changes of newly-synthesized molecules of the inflammatory cytokine tumor necrosis factor (TNF)-α while it was in transit from the endoplasmic reticulum via the Golgi to the plasma membrane. The toolbox we present here can be applied to measure intracellular pH with high spatial and temporal resolution, and can be used to assess organellar pH in disease models.


Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1547
Author(s):  
Anastasia V. Mamontova ◽  
Aleksander M. Shakhov ◽  
Konstantin A. Lukyanov ◽  
Alexey M. Bogdanov

The bright ultimately short lifetime enhanced emitter (BrUSLEE) green fluorescent protein, which differs from the enhanced green fluorescent protein (EGFP) in three mutations, exhibits an extremely short fluorescence lifetime at a relatively high brightness. An important contribution to shortening the BrUSLEE fluorescence lifetime compared to EGFP is provided by the T65G substitution of chromophore-forming residue and the Y145M mutation touching the chromophore environment. Although the influence of the T65G mutation was studied previously, the role of the 145th position in determining the GFPs physicochemical characteristics remains unclear. In this work, we show that the Y145M substitution, both alone and in combination with the F165Y mutation, does not shorten the fluorescence lifetime of EGFP-derived mutants. Thus, the unlocking of Y145M as an important determinant of lifetime tuning is possible only cooperatively with mutations at position 65. We also show here that the introduction of a T65G substitution into EGFP causes complex photobehavior of the respective mutants in the lifetime domain, namely, the appearance of two fluorescent states with different lifetimes, preserved in any combination with the Y145M and F165Y substitutions.


Sign in / Sign up

Export Citation Format

Share Document