An Extreme Ultraviolet Spin Grating for Spatially Resolved, Hyperspectral Magnetic Dichroism Spectroscopies

Author(s):  
Nathan J. Brooks ◽  
Kevin M. Dorney ◽  
Jennifer L. Ellis ◽  
Daniel D. Hickstein ◽  
Quynh L. Nguyen ◽  
...  
2020 ◽  
Vol 124 (7) ◽  
Author(s):  
J. K. Dewhurst ◽  
F. Willems ◽  
P. Elliott ◽  
Q. Z. Li ◽  
C. von Korff Schmising ◽  
...  

2021 ◽  
Author(s):  
Luca Teriaca ◽  

<p>The Solar Orbiter spacecraft carries a powerful set of remote sensing instruments that allow studying the solar atmosphere with unprecedented diagnostic capabilities. Many such diagnostics require the simultaneous usage of more than one instrument. One example of that is the capability, for the first time, to obtain (near) simultaneous spatially resolved observations of the emission from the first three lines of the Lyman series of hydrogen and of He II Lyman alpha. In fact, the SPectral Imaging of the Coronal Environment (SPICE) spectrometer can observe the Lyman beta and gamma lines in its long wavelength (SPICE-LW) channel, the High Resolution Lyman Alpha (HRILYA) telescope of the Extreme Ultraviolet Imager (EUI) acquires narrow band images in the Lyman alpha line while the Full Disk Imager (FSI) of EUI can take images dominated by the Lyman alpha line of ionized Helium at 30.4 nm (FSI-304). Being hydrogen and helium the main components of our star, these very bright transitions play an important role in the energy budget of the outer atmosphere via radiative losses and the measurement of their profiles and radiance ratios is a fundamental constraint to any comprehensive modelization effort of the upper solar chromosphere and transition region. Additionally, monitoring their average ratios can serve as a check out for the relative radiometric performance of the two instruments throughout the mission.</p><p>Although the engineering data acquired so far are far from ideal in terms of time simultaneity (often only within about 1 h) and line coverage (often only Lyman beta was acquired by SPICE and not always near simultaneous images from all three telescopes are available) the analysis we present here still offers a great opportunity to have a first look at the potential of this diagnostic from the two instruments.</p><p>In fact, we have identified a series of datasets obtained at disk center and at various positions at the solar limb that allow studying the Lyman alpha to beta radiance ratio and their relation to He II 30.4 as a function of the position on the Sun (disk center versus limb and quiet Sun versus coronal holes).</p>


Optica ◽  
2016 ◽  
Vol 3 (10) ◽  
pp. 1122 ◽  
Author(s):  
G. S. M. Jansen ◽  
D. Rudolf ◽  
L. Freisem ◽  
K. S. E. Eikema ◽  
S. Witte

2019 ◽  
Vol 19 (1) ◽  
pp. 562-567 ◽  
Author(s):  
Maksym Tryus ◽  
Stefan Herbert ◽  
Daniel Wilson ◽  
Lukas Bahrenberg ◽  
Serhiy Danylyuk ◽  
...  

Nanoscale ◽  
2020 ◽  
Vol 12 (41) ◽  
pp. 21225-21233
Author(s):  
Anna Mandziak ◽  
Guiomar D. Soria ◽  
José Emilio Prieto ◽  
Michael Foerster ◽  
Juan de la Figuera ◽  
...  

We present a spatially resolved X-ray magnetic dichroism study of high-quality, in situ grown nickel oxide films.


2019 ◽  
Vol 205 ◽  
pp. 02004
Author(s):  
Matthijs Jansen ◽  
Anne de Beurs ◽  
Kevin Liu ◽  
Kjeld Eikema ◽  
Stefan Witte

Using a pair of phase-locked high-harmonic generation sources, we demonstrate Fourier transform interferometry at extreme-ultraviolet (EUV) wavelengths between 17 and 55 nm. This is made possible by the adaptation of a birefringence-based ultrastable interferometer for infrared femtosecond pulses. Since we measure the interference with an EUV-sensitive CCD camera, this enables a wide range of spatially and spectrally resolved measurements at extreme ultraviolet wavelengths. We demonstrate the capabilities of this technique by performing wavelength-resolved high-resolution coherent diffractive imaging and by measuring the spatially resolved spectral absorption of a thin structured titanium film.


Author(s):  
David C. Joy

Electron channeling patterns (ECP) were first found by Coates (1967) while observing a large bulk, single crystal of silicon in a scanning electron microscope. The geometric pattern visible was shown to be produced as a result of the changes in the angle of incidence, between the beam and the specimen surface normal, which occur when the sample is examined at low magnification (Booker, Shaw, Whelan and Hirsch 1967).A conventional electron diffraction pattern consists of an angularly resolved intensity distribution in space which may be directly viewed on a fluorescent screen or recorded on a photographic plate. An ECP, on the other hand, is produced as the result of changes in the signal collected by a suitable electron detector as the incidence angle is varied. If an integrating detector is used, or if the beam traverses the surface at a fixed angle, then no channeling contrast will be observed. The ECP is thus a time resolved electron diffraction effect. It can therefore be related to spatially resolved diffraction phenomena by an application of the concepts of reciprocity (Cowley 1969).


Author(s):  
Steven M. Le Vine ◽  
David L. Wetzel

In situ FT-IR microspectroscopy has allowed spatially resolved interrogation of different parts of brain tissue. In previous work the spectrrscopic features of normal barin tissue were characterized. The white matter, gray matter and basal ganglia were mapped from appropriate peak area measurements from spectra obtained in a grid pattern. Bands prevalent in white matter were mostly associated with the lipid. These included 2927 and 1469 cm-1 due to CH2 as well as carbonyl at 1740 cm-1. Also 1235 and 1085 cm-1 due to phospholipid and galactocerebroside, respectively (Figs 1and2). Localized chemical changes in the white matter as a result of white matter diseases have been studied. This involved the documentation of localized chemical evidence of demyelination in shiverer mice in which the spectra of white matter lacked the marked contrast between it and gray matter exhibited in the white matter of normal mice (Fig. 3).The twitcher mouse, a model of Krabbe’s desease, was also studied. The purpose in this case was to look for a localized build-up of psychosine in the white matter caused by deficiencies in the enzyme responsible for its breakdown under normal conditions.


Author(s):  
David L. Wetzel ◽  
John A. Reffner ◽  
Gwyn P. Williams

Synchrotron radiation is 100 to 1000 times brighter than a thermal source such as a globar. It is not accompanied with thermal noise and it is highly directional and nondivergent. For these reasons, it is well suited for ultra-spatially resolved FT-IR microspectroscopy. In efforts to attain good spatial resolution in FT-IR microspectroscopy with a thermal source, a considerable fraction of the infrared beam focused onto the specimen is lost when projected remote apertures are used to achieve a small spot size. This is the case because of divergence in the beam from that source. Also the brightness is limited and it is necessary to compromise on the signal-to-noise or to expect a long acquisition time from coadding many scans. A synchrotron powered FT-IR Microspectrometer does not suffer from this effect. Since most of the unaperatured beam’s energy makes it through even a 12 × 12 μm aperture, that is a starting place for aperture dimension reduction.


Sign in / Sign up

Export Citation Format

Share Document