Second-order coupled-mode equations for spatially periodic media*

1977 ◽  
Vol 67 (6) ◽  
pp. 825 ◽  
Author(s):  
J. A. Kong
2020 ◽  
Vol 20 (4) ◽  
pp. 769-782
Author(s):  
Amiya K. Pani ◽  
Vidar Thomée ◽  
A. S. Vasudeva Murthy

AbstractWe analyze a second-order in space, first-order in time accurate finite difference method for a spatially periodic convection-diffusion problem. This method is a time stepping method based on the first-order Lie splitting of the spatially semidiscrete solution. In each time step, on an interval of length k, of this solution, the method uses the backward Euler method for the diffusion part, and then applies a stabilized explicit forward Euler approximation on {m\geq 1} intervals of length {\frac{k}{m}} for the convection part. With h the mesh width in space, this results in an error bound of the form {C_{0}h^{2}+C_{m}k} for appropriately smooth solutions, where {C_{m}\leq C^{\prime}+\frac{C^{\prime\prime}}{m}}. This work complements the earlier study [V. Thomée and A. S. Vasudeva Murthy, An explicit-implicit splitting method for a convection-diffusion problem, Comput. Methods Appl. Math. 19 2019, 2, 283–293] based on the second-order Strang splitting.


Author(s):  
Shixu Meng ◽  
Bojan B. Guzina

When considering an effective, i.e. homogenized description of waves in periodic media that transcends the usual quasi-static approximation, there are generally two schools of thought: (i) the two-scale approach that is prevalent in mathematics and (ii) the Willis’ homogenization framework that has been gaining popularity in engineering and physical sciences. Notwithstanding a mounting body of literature on the two competing paradigms, a clear understanding of their relationship is still lacking. In this study, we deploy an effective impedance of the scalar wave equation as a lens for comparison and establish a low-frequency, long-wavelength dispersive expansion of the Willis’ effective model, including terms up to the second order. Despite the intuitive expectation that such obtained effective impedance coincides with its two-scale counterpart, we find that the two descriptions differ by a modulation factor which is, up to the second order, expressible as a polynomial in frequency and wavenumber. We track down this inconsistency to the fact that the two-scale expansion is commonly restricted to the free-wave solutions and thus fails to account for the body source term which, as it turns out, must also be homogenized—by the reciprocal of the featured modulation factor. In the analysis, we also (i) reformulate for generality the Willis’ effective description in terms of the eigenfunction approach, and (ii) obtain the corresponding modulation factor for dipole body sources, which may be relevant to some recent efforts to manipulate waves in metamaterials.


1984 ◽  
Vol 7 (1) ◽  
pp. 159-169
Author(s):  
Sikha Bhattacharyya ◽  
R. K. Roy Choudhury

We use the Lie series averaging method to obtain a complete second order solution for motion of a charged particle in a spatially periodic magnetic field. A comparison is made with the first order solution obtained previously by Coffey.


1996 ◽  
Author(s):  
Abdolnasser Zakery ◽  
R. Zare ◽  
Aref Bakhtazad

2010 ◽  
Vol 81 (5) ◽  
Author(s):  
F. Haudin ◽  
R. G. Elías ◽  
R. G. Rojas ◽  
U. Bortolozzo ◽  
M. G. Clerc ◽  
...  

Author(s):  
Younho Choi ◽  
Yungeun Jang ◽  
Sangsun Lee ◽  
Hosung Chang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document