Flashed stimuli and the suppression of flicker response from long-wavelength-sensitive cones: integrating two separate approaches

2001 ◽  
Vol 18 (12) ◽  
pp. 2957 ◽  
Author(s):  
Alvin Eisner
1990 ◽  
Vol 64 (2) ◽  
pp. 313-325 ◽  
Author(s):  
R. Pflug ◽  
R. Nelson ◽  
P. K. Ahnelt

1. Dim backgrounds can enhance small-spot flicker responses of cat retinal horizontal cells by a factor of 2 or more. 2. Intracellular marking with horseradish peroxidase (HRP) reveals that this enhancement effect occurs in--but is not necessarily limited to--the cone-connected, A-type horizontal cell. 3. Flicker amplitudes decrease over a frequency range from 3 to 36 Hz of square-wave photic stimulation. There is little evidence of flicker-response enhancement at 3 Hz. Flicker-response enhancement is typically 2-6 times larger at 35 than at 6 Hz. 4. Inspection of flicker waveforms indicates both a scaling-up of response signals with backgrounds and a distortion composed of 2- to 5-ms-latency decrease, expressed primarily within a quick component of OFF-repolarization. 5. Flicker enhancement first increases as a function of background irradiance and then decreases. The increasing limb has the dynamic range and spectral sensitivity of cat rods (507-nm peak). Enhancement is maintained during rod after-effects. The decreasing limb of the background-versus-intensity function results from light adaptation of cat, long-wavelength (red) cones. 6. The flicker responses themselves peak spectrally at approximately 555 nm and reflect only the activity of cat long-wavelength (red) cones, without evidence of intermixing of other photoreceptor mechanisms. 7. Thus within the first synaptic layer of the cat visual system, rod signals interact with the flicker responses of red cones, both increasing cone-signal amplitudes and modifying cone-signal waveforms. 8. The results are closely analogous to "suppressive rod-cone interaction" (SRCI) as described in human psychophysics. 9. An outer-plexiform-layer circuit involving rods, horizontal cells and cones may mediate rod-induced enhancement of cone flicker. This being the case, notions of horizontal-cell feedback interactions with cones may have to be modified and extended. A specific feedback model is elaborated in the companion paper.


1979 ◽  
Vol 44 ◽  
pp. 307-313
Author(s):  
D.S. Spicer

A possible relationship between the hot prominence transition sheath, increased internal turbulent and/or helical motion prior to prominence eruption and the prominence eruption (“disparition brusque”) is discussed. The associated darkening of the filament or brightening of the prominence is interpreted as a change in the prominence’s internal pressure gradient which, if of the correct sign, can lead to short wavelength turbulent convection within the prominence. Associated with such a pressure gradient change may be the alteration of the current density gradient within the prominence. Such a change in the current density gradient may also be due to the relative motion of the neighbouring plages thereby increasing the magnetic shear within the prominence, i.e., steepening the current density gradient. Depending on the magnitude of the current density gradient, i.e., magnetic shear, disruption of the prominence can occur by either a long wavelength ideal MHD helical (“kink”) convective instability and/or a long wavelength resistive helical (“kink”) convective instability (tearing mode). The long wavelength ideal MHD helical instability will lead to helical rotation and thus unwinding due to diamagnetic effects and plasma ejections due to convection. The long wavelength resistive helical instability will lead to both unwinding and plasma ejections, but also to accelerated plasma flow, long wavelength magnetic field filamentation, accelerated particles and long wavelength heating internal to the prominence.


1991 ◽  
Vol 161 (11) ◽  
pp. 95 ◽  
Author(s):  
A.I. Frank
Keyword(s):  

GIS Business ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 383-394
Author(s):  
K. Shalini ◽  
K.Rajasekhar

In this paper, the effect of Slip and Hall effects on the flow of Hyperbolic tangent fluid through a porous medium in a planar channel with peristalsis under the assumption of long wavelength is investigated. A Closed form solutions are obtained for axial velocity and pressure gradient by employing perturbation technique. The effects of various emerging parameters on the pressure gradient, time averaged volume flow rate and frictional force are discussed with the aid of graphs.


Sign in / Sign up

Export Citation Format

Share Document