Development of long wavelength fluorescent sensors

2011 ◽  
Author(s):  
Shaohui Zhang
Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4768 ◽  
Author(s):  
Zongcheng Wang ◽  
Huihuang Zheng ◽  
Chengliang Zhang ◽  
Dongfang Tang ◽  
Qiyao Wu ◽  
...  

The content of selenocysteine in cells has an important effect on a variety of human diseases, and the detection of selenocysteine by fluorescent sensors in vivo has shown many advantages. In order to further develop fast-reaction-time, good-selectivity, and high-sensitivity long-wavelength selenocysteine fluorescent sensors, we designed and synthesized the compound YZ-A4 as a turn-on fluorescent sensor to detect the content of selenocysteine. The quantitative detection range of the sensor YZ-A4 to selenocysteine was from 0 to 32 μM, and the detection limit was as low as 11.2 nM. The sensor displayed a rapid turn-on response, good selectivity, and high sensitivity to selenocysteine. Finally, we have demonstrated that YZ-A4 could be used for fluorescence imaging of selenocysteine in living cells.


2019 ◽  
Vol 44 (3-4) ◽  
pp. 152-160
Author(s):  
Guiqian Fang ◽  
Hao Wang ◽  
Zhancun Bian ◽  
Guimin Zhang ◽  
Min Guo ◽  
...  

Long-wavelength fluorescent sensors with large Stokes shifts show useful applications in chemical biology and clinical laboratory diagnosis. We have recently reported [4-(4-{[3-(4-boronobenzamido)propyl]carbamoyl}quinolin-2-yl)phenyl]boronic acid that can selectively recognize d-ribose in a buffer solution of pH 7.4. However, the short emission wavelength (395 nm) and aggregation-caused quenching effect are not conducive to applications as a sensor. Novel diboronic acid compounds are synthesized using 2-(4-boronophenyl)quinoline-4-carboxylic acid as the building block and p-phenylenediamine as the linker. These compounds show aggregation-induced emission and fluorescence emission at about 500 nm. In addition, after binding to most carbohydrates, the aggregated state of the boronic acid–containing compounds is dissociated, resulting in fluorescence quenching. Using [4-(4-{[4-(3-borono-5-methoxybenzamido)phenyl]carbamoyl}quinoline-2-yl)phenyl]boronic acid as an example, addition of 55 mM of d-ribose resulted in the strongest quenching of 83% for all the tested carbohydrates, indicating selectively recognizing d-ribose. The reciprocal of the fluorescence intensity change showed a good linear relationship with the reciprocal of d-ribose concentration ( R2 ⩾ 0.99), indicating sensor binding to d-ribose in a ratio of 1:1 to form an inclusion complex. The fluorescence emission is red-shifted compared to 2-(4-boronophenyl)quinoline-4-carboxylic acid and its common derivatives, which provides a new method for the development of long-wavelength fluorescent sensors.


1979 ◽  
Vol 44 ◽  
pp. 307-313
Author(s):  
D.S. Spicer

A possible relationship between the hot prominence transition sheath, increased internal turbulent and/or helical motion prior to prominence eruption and the prominence eruption (“disparition brusque”) is discussed. The associated darkening of the filament or brightening of the prominence is interpreted as a change in the prominence’s internal pressure gradient which, if of the correct sign, can lead to short wavelength turbulent convection within the prominence. Associated with such a pressure gradient change may be the alteration of the current density gradient within the prominence. Such a change in the current density gradient may also be due to the relative motion of the neighbouring plages thereby increasing the magnetic shear within the prominence, i.e., steepening the current density gradient. Depending on the magnitude of the current density gradient, i.e., magnetic shear, disruption of the prominence can occur by either a long wavelength ideal MHD helical (“kink”) convective instability and/or a long wavelength resistive helical (“kink”) convective instability (tearing mode). The long wavelength ideal MHD helical instability will lead to helical rotation and thus unwinding due to diamagnetic effects and plasma ejections due to convection. The long wavelength resistive helical instability will lead to both unwinding and plasma ejections, but also to accelerated plasma flow, long wavelength magnetic field filamentation, accelerated particles and long wavelength heating internal to the prominence.


1991 ◽  
Vol 161 (11) ◽  
pp. 95 ◽  
Author(s):  
A.I. Frank
Keyword(s):  

GIS Business ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 383-394
Author(s):  
K. Shalini ◽  
K.Rajasekhar

In this paper, the effect of Slip and Hall effects on the flow of Hyperbolic tangent fluid through a porous medium in a planar channel with peristalsis under the assumption of long wavelength is investigated. A Closed form solutions are obtained for axial velocity and pressure gradient by employing perturbation technique. The effects of various emerging parameters on the pressure gradient, time averaged volume flow rate and frictional force are discussed with the aid of graphs.


Sign in / Sign up

Export Citation Format

Share Document