Ill-posed inverse problem in diffraction optics Tolerance analysis of diffractive lenses and gratings

2006 ◽  
Vol 23 (2) ◽  
pp. 497 ◽  
Author(s):  
Vitaly I. Kalikmanov ◽  
Elena A. Sokolova
Proceedings ◽  
2019 ◽  
Vol 33 (1) ◽  
pp. 21
Author(s):  
Fabrizia Guglielmetti ◽  
Eric Villard ◽  
Ed Fomalont

A stable and unique solution to the ill-posed inverse problem in radio synthesis image analysis is sought employing Bayesian probability theory combined with a probabilistic two-component mixture model. The solution of the ill-posed inverse problem is given by inferring the values of model parameters defined to describe completely the physical system arised by the data. The analysed data are calibrated visibilities, Fourier transformed from the ( u , v ) to image planes. Adaptive splines are explored to model the cumbersome background model corrupted by the largely varying dirty beam in the image plane. The de-convolution process of the dirty image from the dirty beam is tackled in probability space. Probability maps in source detection at several resolution values quantify the acquired knowledge on the celestial source distribution from a given state of information. The information available are data constrains, prior knowledge and uncertain information. The novel algorithm has the aim to provide an alternative imaging task for the use of the Atacama Large Millimeter/Submillimeter Array (ALMA) in support of the widely used Common Astronomy Software Applications (CASA) enhancing the capabilities in source detection.


2012 ◽  
Vol 21 (05) ◽  
pp. 1250037
Author(s):  
HERVÉ MOLIQUE ◽  
JERZY DUDEK

In this paper we collect a number of technical issues that arise when constructing the matrix representation of the most general nuclear mean field Hamiltonian within which "all terms allowed by general symmetries are considered not only in principle but also in practice". Such a general posing of the problem is necessary when investigating the predictive power of the mean field theories by means of the well-posed inverse problem. [J. Dudek et al., Int. J. Mod. Phys. E21 (2012) 1250053]. To our knowledge quite often ill-posed mean field inverse problems arise in practical realizations what makes reliable extrapolations into the unknown areas of nuclei impossible. The conceptual and technical issues related to the inverse problem have been discussed in the above-mentioned topic whereas here we focus on "how to calculate the matrix elements, fast and with high numerical precision when solving the inverse problem" [For space-limitation reasons we illustrate the principal techniques on the example of the central interactions].


2020 ◽  
Vol 28 (2) ◽  
pp. 211-235
Author(s):  
Tran Bao Ngoc ◽  
Nguyen Huy Tuan ◽  
Mokhtar Kirane

AbstractIn this paper, we consider an inverse problem for a time-fractional diffusion equation with a nonlinear source. We prove that the considered problem is ill-posed, i.e., the solution does not depend continuously on the data. The problem is ill-posed in the sense of Hadamard. Under some weak a priori assumptions on the sought solution, we propose a new regularization method for stabilizing the ill-posed problem. We also provide a numerical example to illustrate our results.


2000 ◽  
Vol 24 (9) ◽  
pp. 589-594 ◽  
Author(s):  
Ping Wang ◽  
Kewang Zheng

We consider the problem of determining the conductivity in a heat equation from overspecified non-smooth data. It is an ill-posed inverse problem. We apply a regularization approach to define and construct a stable approximate solution. We also conduct numerical simulation to demonstrate the accuracy of our approximation.


Author(s):  
D. W. Burr ◽  
K. J. Daun ◽  
K. A. Thomson ◽  
G. J. Smallwood

In multiangle elastic light scattering (MAELS) experiments, the morphology of aerosolized particles is inferred by shining collimated radiation through the aerosol and then measuring the scattered light intensity over a set of angles. In the case of soot-laden aerosols MAELS can be used to recover, among other things, the size distribution of soot aggregates. This involves solving an ill-posed set of equations, however. While previous work focused on regularizing the inverse problem using Bayesian priors, this paper presents a design-of-experiment methodology for identifying the set of measurement angles that minimizes its ill-posedness. The inverse problem produced by the optimal angle set requires less regularization and is less sensitive to noise, compared with two other measurement angle sets commonly used to carry out MAELS experiments.


Sign in / Sign up

Export Citation Format

Share Document