Broadband ultra-flattened dispersion, ultra-low confinement loss and large effective mode area in an octagonal photonic quasi-crystal fiber

2018 ◽  
Vol 35 (3) ◽  
pp. 431 ◽  
Author(s):  
Exian Liu ◽  
Wei Tan ◽  
Bei Yan ◽  
Jianlan Xie ◽  
Rui Ge ◽  
...  
2021 ◽  
Author(s):  
Bibhatsu Kuiri ◽  
Bubai Dutta ◽  
Nilanjana Sarkar ◽  
Saikat Santra ◽  
Paulomi Mandal ◽  
...  

Abstract A newer and efficient solid core with air holes and ring based circular photonic crystal fiber (C-PCF) design is proposed, developed, and studied. The C-PCF structure with a ring core and three layers of air holes is developed to communicate terahertz frequency of the range of 1 THz to 3 THz. Finite element method (FEM) is used to optimize the position, shape and dimensions of air holes and refractive index (RI) of material for the proposed PCF design and check the efficiency to support different orbital angular momentum (OAM) modes for communication. Our novel designed C-PCF supports multiple stable modes with mode purity above 0.9. Confinement loss is in the range of 10-12 dB/cm, highest effective mode area in the order of 1 mm2 is achieved in the investigated study for 3 THz transmission. The study observes that the performance of PCF is strongly dependent on RI of core and cladding.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Shaymaa Riyadh Tahhan ◽  
Hadeel K. Aljobouri

AbstractStimulant abuse enhances dopamine release, thereby causing increased excitation. Any extent of stimulant abuse can considerably harm the user. Thus, methods of detecting stimulants must be precise, accurate, and reliable. A novel terahertz (THz) photonic crystal fiber with a Topas substrate is designed and rigorously investigated for detecting liquid amphetamine, cocaine, and ketamine. The fiber structure has a pentagonal shape and comprises circular air holes in the core and cladding spatial extents. As shown in finite element simulation, the proposed fiber yields a high relative sensitivity of approximately 80 % when any of the liquid stimulants is infiltrated in the core air holes. At 1 THz operating frequency, the proposed fiber produces a large effective mode area, negligible confinement loss, and extremely low bending and effective material losses. Other THz waveguiding properties, such as core power fraction and total loss, are also studied. Lastly, a positive and negative 2 % fabrication tolerance is set to ensure seamless potential practical realization of the fiber.


2020 ◽  
Vol 30 (4) ◽  
pp. 331
Author(s):  
Vu Tran Quoc ◽  
Trang Chu Thi Gia ◽  
Minh Le Van ◽  
Thuy Nguyen Thi ◽  
Phuong Nguyen Thi Hong ◽  
...  

In this paper, a photonic crystal fiber (PCF) with core infiltrated with Nitrobenzene is proposed and investigated. Its feature properties as the effective refractive index, effective mode area, chromatic dispersion, and confinement loss have been numerically simulated. The obtained results show that characteristic quantities of PCF with core infiltrated with Nitrobenzene (PCF-N) having some advantages in comparison to PCF with core infiltrated with Toluene (PCF-T) at 1.55μm wavelength. For the purpose of supercontinuum generation, two optimal structures with lattice constants 2.0μm and 2.5μm with filling factors d/Ʌ = 0.3 are identified.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Md. Ibadul Islam ◽  
Md Saiful Islam

AbstractIn this work, a dispersion compensating photonic crystal fiber (DC-PCF) is proposed in which dispersion, dispersion slope, second order dispersion, third order dispersion, nonlinearity, effective mode area, V parameter are investigated. The suggested structure is very effective for compensating of chromatic dispersion about −951 to −3075.10 ps/(nm.km) over 1340–1640 nm wavelength bandwidth. With perfectly matched layer boundary condition, guiding properties are inspected applying finite element method (FEM). The investigated results conform the opportunity of large negative dispersion and high group velocity dispersion (GVD) of −2367.10 ps/(nm.km) and 3018.55 ps2/km respectively, at 1550 nm operating wavelength. The offered fiber also shows low third order dispersion about −637.88 ps3/km, high nonlinearity of 91.11 W−1 km−1. From overall simulation results, it can be expected that the suggested PCF will be an effective candidate in high bit rate long haul optical communication system as well as sensing applications.


2012 ◽  
Vol 535-537 ◽  
pp. 1304-1307
Author(s):  
Di Li ◽  
Qiang Xu ◽  
Du Qi Yuan ◽  
Xu Chao Duan

We propose a novel type of photonic crystal fiber with low fattened dispersion and high nonlinearity for four wave mixing. The dispersion and nonlinearity coefficient are investigated simultaneously by using the full vectorial finite element method with anisotropic perfectly matched layers. The optimized result has been obtained by adjusting the design parameter of the proposed fiber, which has dispersion is -1.53 ps•nm−1 km−1 at wavelength of 1.55μm, and in addition the relatively small effective mode area of 2.23μm2 is obtained at the same wavelength, which will induce higher nonlinearity coefficient is close 54.8 W-1• km-1 at the wavelength of 1.55μm. The proposed PCF is suitable for applications as a chromatic dispersion controller, dispersion compensator, or as candidate for the nonlinear optical systems because of its small effective mode area.


Author(s):  
Thi Thuy Nguyen ◽  
Van Hung Dao

We examine the possibility of improving the nonlinear properties of photonic crystal fibers (PCFs) with As2Se3 substrates by creating a difference in the diameters of the air holes of the rings around the core. With the new design, all-normal dispersion properties, small effective mode area, high nonlinear coefficient, and low confinement loss were achieved in the long-wavelength range of 2.0–7.0 µm. The highest nonlinear coefficient is 4414.918 W-1.km-1 at 4.5 µm for the lattice constant (Ʌ) of 3.0 µm and the filling factor (d/Ʌ) of 0.85, while the lowest loss is 1.823´10-21 dB/cm with Ʌ = 3.5 µm and d/Ʌ = 0.8. Based on the numerical simulation results, the characteristics of two optimal structures have been analyzed in detail to guide the application in supercontinuum generation.


Sign in / Sign up

Export Citation Format

Share Document