scholarly journals Non-line-of-sight object location estimation fromscattered light using plenoptic data

Author(s):  
Takahiro Sasaki ◽  
James Leger
2017 ◽  
Vol 13 (1) ◽  
pp. 155014771668273 ◽  
Author(s):  
Chien-Sheng Chen

Because there are always non-line-of-sight effects in signal propagation, researchers have proposed various algorithms to mitigate the measured error caused by non-line-of-sight. Initially inspired by flocking birds, particle swarm optimization is an evolutionary computation tool for optimizing a problem by iteratively attempting to improve a candidate solution with respect to a given measure of quality. In this article, we propose a new location algorithm that uses time-of-arrival measurements to improve the mobile station location accuracy when three base stations are available. The proposed algorithm uses the intersections of three time-of-arrival circles based on the particle swarm optimization technique to give a location estimation of the mobile station in non-line-of-sight environments. An object function is used to establish the nonlinear relationship between the intersections of the three circles and the mobile station location. The particle swarm optimization finds the optimal solution of the object function and efficiently determines the mobile station location. The simulation results show that the proposed algorithm performs better than the related algorithms in wireless positioning systems, even in severe non-line-of-sight propagation conditions.


2017 ◽  
Vol 13 (7) ◽  
pp. 155014771771738 ◽  
Author(s):  
Chien-Sheng Chen

To enhance the effectiveness and accuracy of mobile station location estimation, author utilizes time of arrival measurements from three base stations and one angle of arrival information at the serving base station to locate mobile station in non-line-of-sight environments. This article makes use of linear lines of position, rather than circular lines of position, to give location estimation of the mobile station. It is much easier to solve two linear line equations rather than nonlinear circular ones. Artificial neural networks are widely used techniques in various areas due to overcoming the problem of exclusive and nonlinear relationships. The proposed algorithms employ the intersections of three linear lines of position and one angle of arrival line, based on Levenburg–Marquardt algorithm, to determine the mobile station location without requiring a priori information about the non-line-of-sight error. The simulation results show that the proposed algorithms can always provide much better location estimation than Taylor series algorithm, hybrid lines of position algorithm as well as the geometrical positioning methods for different levels of biased, unbiased, and distance-dependent non-line-of-sight errors.


Author(s):  
Michael L. McGuire ◽  
Konstantinos N. Plataniotis

Node localization is an important issue for wireless sensor networks to provide context for collected sensory data. Sensor network designers need to determine if the desired level of localization accuracy is achievable from their network configuration and available measurements. The Cramér-Rao lower bound is used extensively for this purpose. This bound is loose since it uses only information from measurements in its calculations. Information, such as that from the sensor selection process, is not considered. In addition, non-line-of-sight radio propagation causes the regularity conditions of the Cramér-Rao lower bound to be violated. This chapter demonstrates the Weinstein-Weiss and extended Ziv-Zakai lower bounds for localization error which remain valid with non-line-of-sight propagation. These bounds also use all available information for bound calculations. It is demonstrated that these bounds are tight to actual estimator performance and may be used determine the available accuracy of location estimation from survey data collected in the network area.


2007 ◽  
Author(s):  
Jonathon Emis ◽  
Bryan Huang ◽  
Timothy Jones ◽  
Mei Li ◽  
Don Tumbocon

Sign in / Sign up

Export Citation Format

Share Document