Enhanced sensitivity to current modulation near dynamic instability in semiconductor lasers with optical feedback and optical injection

2004 ◽  
Vol 21 (2) ◽  
pp. 302 ◽  
Author(s):  
Maria S. Torre ◽  
Cristina Masoller ◽  
Paul Mandel ◽  
K. Alan Shore
2021 ◽  
Author(s):  
Dong-Zhou Zhong ◽  
Zhe Xu ◽  
Ya-Lan Hu ◽  
Ke-Ke Zhao ◽  
Jin-Bo Zhang ◽  
...  

Abstract In this work, we utilize three parallel reservoir computers using semiconductor lasers with optical feedback and light injection to model radar probe signals with delays. Three radar probe signals are generated by driving lasers constructed by a three-element lase array with self-feedback. The response lasers are implemented also by a three-element lase array with both delay-time feedback and optical injection, which are utilized as nonlinear nodes to realize the reservoirs. We show that each delayed radar probe signal can well be predicted and to synchronize with its corresponding trained reservoir, even when there exist parameter mismatches between the response laser array and the driving laser array. Based on this, the three synchronous probe signals are utilized for ranging to three targets, respectively, using Hilbert transform. It is demonstrated that the relative errors for ranging can be very small and less than 0.6%. Our findings show that optical reservoir computing provides an effective way for applications of target ranging.


2001 ◽  
Vol 63 (3) ◽  
Author(s):  
Y. Liu ◽  
H. F. Chen ◽  
J. M. Liu ◽  
P. Davis ◽  
T. Aida

2018 ◽  
pp. 96-101 ◽  
Author(s):  
Bruno Garbin ◽  
Giovanna Tissoni ◽  
Stephane Barland

Semiconductor lasers with optical injection may be brought to an “excitable” regime, in which they respond to external perturbations in a neuron-like way. When submitted to delayed optical feedback this system can host stable optical localized states. We characterize experimentally the excitable response of a semiconductor laser with optical injection to external perturbations for different parameter values and show that localized states may diffuse in presence of noise.


Nanophotonics ◽  
2020 ◽  
Vol 9 (13) ◽  
pp. 4163-4171 ◽  
Author(s):  
Irene Estébanez ◽  
Janek Schwind ◽  
Ingo Fischer ◽  
Apostolos Argyris

AbstractSemiconductor lasers (SLs) that are subject to delayed optical feedback and external optical injection have been demonstrated to perform information processing using the photonic reservoir computing paradigm. Optical injection or optical feedback can under some conditions induce bandwidth-enhanced operation, expanding their modulation response up to several tens of GHz. However, these conditions may not always result in the best performance for computational tasks, since the dynamical and nonlinear properties of the reservoir might change as well. Here we show that by using strong optical injection we can obtain an increased frequency response and a significant acceleration in the information processing capability of this nonlinear system, without loss of performance. Specifically, we demonstrate numerically that the sampling time of the photonic reservoir can be as small as 12 ps while preserving the same computational performance when compared to a much slower sampling rate. We also show that strong optical injection expands the reservoir’s operating conditions for which we obtain improved task performance. The latter is validated experimentally for larger sampling times of 100 ps. The above attributes are demonstrated in a coherent optical communication decoding task.


2021 ◽  
Vol 11 (17) ◽  
pp. 7871
Author(s):  
Jordi Tiana-Alsina ◽  
Cristina Masoller

The dynamics of semiconductor lasers with optical feedback and current modulation has been extensively studied, and it is, by now, well known that the interplay of modulation and feedback can produce a rich variety of nonlinear phenomena. Near threshold, in the so-called low frequency fluctuations regime, the intensity emitted by the laser, without modulation, exhibits feedback-induced spikes, which occur at irregular times. When the laser current is sinusoidally modulated, under appropriate conditions, the spikes lock to the modulation and become periodic. In previous works, we studied experimentally the locked behavior and found sub-harmonic locking (regular spike timing such that a spike is emitted every two or three modulation cycles), but we did not find spikes with regular timing, emitted every modulation cycle. To understand why 1:1 regular locking was not observed, here, we perform simulations of the well-known Lang–Kobayashi model. We find a good qualitative agreement with the experiments: with small modulation amplitudes, we find wide parameter regions in which the spikes are sub-harmonically locked to the modulation, while 1:1 locking occurs at much higher modulation amplitudes.


Sign in / Sign up

Export Citation Format

Share Document