frequency fluctuation
Recently Published Documents


TOTAL DOCUMENTS

322
(FIVE YEARS 114)

H-INDEX

25
(FIVE YEARS 4)

2022 ◽  
pp. 197140092110674
Author(s):  
Yuanyuan Qin ◽  
Fengxia Zhang ◽  
Min Zhang ◽  
Wenzhen Zhu

Objectives Repetitive transcranial magnetic stimulation (rTMS) is a promising tool to modulate brain plasticity, but the neural basis has been little addressed. The purpose was to investigate the effects of rTMS on resting-state brain activity in patients with Alzheimer’s disease (AD). Methods Seventeen patients with mild or moderate AD were enrolled and randomly divided into one of the two intervention groups: (1) real rTMS combined with cognitive training (real group, n = 9); (2) sham rTMS with cognitive training (sham group, n = 8). 10 Hz rTMS was used to stimulate the left dorsolateral prefrontal cortex and then the left lateral temporal lobe for 20 min each day for 4 weeks. Each patient underwent neuropsychological assessment and resting-state functional magnetic resonance imaging (rsfMRI) before and after treatment. The fractional amplitude of low frequency fluctuation (fALFF) of rsfMRI data in real group were: (1) compared to sham; (2) correlated with rTMS-induced cognitive alterations. Results Significantly increased fALFF in right cerebellum/declive, left lingual/cuneus and left cingulate gyrus, as well as decreased fALFF in left middle frontal gyrus were found after 10 Hz rTMS, but not after sham stimulation. Using these suprathreshold regions, we found that rTMS increased functional connectivity between the right cerebellum/declive and left precentral/postcentral gyrus. The fALFF increase in left lingual/cuneus and right cerebellum/declive was associated with significant improvement in cognitive function. Conclusions rTMS combined with cognitive training induced increased low frequency fluctuation neural oscillations and functional connectivity in brain regions subserving cognition, suggesting a possible neuronal mechanism of the beneficial effects of rTMS.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 535
Author(s):  
Zexu Chen ◽  
Jing Shi ◽  
Zhaofang Song ◽  
Wangwang Yang ◽  
Zitong Zhang

In recent years, demand response (DR) has played an increasingly important role in maintaining the safety, stability and economic operation of power grid. Due to the continuous running state and extremely fast speed of response, the aggregated inverter air conditioning (IAC) load is considered as the latest and most ideal object for DR. However, it is easy to cause load rebound when the aggregated IAC load participates in DR. Existing methods for controlling air conditioners to participate in DR cannot meet the following three requirements at the same time: basic DR target, load rebound suppression, and users’ comfort. Therefore, this paper has proposed a genetic algorithm based temperature-queuing control method for aggregated IAC load control, which could suppress load rebound under the premise of ensuring the DR target and take users’ comfort into account. Firstly, the model of the aggregated IAC load is established by the Monte Carlo method. Then the start and end time of DR are selected as the main solution variables. A genetic algorithm is used as the solving tool. The simulation results show that the proposed strategy shows better performance in suppressing load rebound. In the specific application scenario of adjusting the frequency fluctuation of the microgrid, the results of the case show that this strategy can effectively control the frequency fluctuation of the microgrid. The effectiveness of the strategy is verified.


2022 ◽  
Vol 12 ◽  
Author(s):  
Huan Zhang ◽  
Binrang Yang ◽  
Gang Peng ◽  
Linlin Zhang ◽  
Diangang Fang

Objective: The present study aimed to investigate the effects of the dopamine receptor D4 (DRD4) −521 C/T single-nucleotide polymorphism on brain function among children with attention deficit hyperactivity disorder (ADHD) and to evaluate whether brain function is associated with behavioral performance among this demographic.Methods: Using regional homogeneity, fractional amplitude low-frequency fluctuation, and functional connectivity as measurement indices, we compared differences in resting-state brain function between 34 boys with ADHD in the TT homozygous group and 37 boys with ADHD in the C-allele carrier group. The Conners' Parent Rating Scale, the SNAP-IV Rating Scale, the Stroop Color Word Test, the go/no-go task, the n-back task, and the working memory index within the Wechsler Intelligence Scale for Children-Fourth Edition were selected as comparative indicators in order to test effects on behavioral performance.Results: We found that TT homozygotes had low behavioral performance as compared with C-allele carriers. The regional homogeneity for TT homozygotes decreased in the right middle occipital gyrus and increased in the right superior frontal gyrus as compared with C-allele carriers. In addition, the right middle occipital gyrus and the right superior frontal gyrus were used as the seeds of functional connectivity, and we found that the functional connectivity between the right middle occipital gyrus and the right cerebellum decreased, as did the functional connectivity between the right superior frontal gyrus and the angular gyrus. No statistically significant differences were observed in the respective brain regions when comparing the fractional amplitudes for low-frequency fluctuation between the two groups. Correlation analyses demonstrated that the fractional amplitude low-frequency fluctuation in the precentral gyrus for TT homozygotes were statistically significantly correlated with working memory.Conclusions: We found differing effects of DRD4 −521 C/T polymorphisms on brain function among boys with ADHD. These findings promote our understanding of the genetic basis for neurobiological differences observed among children with ADHD, but they must be confirmed in larger samples.


2022 ◽  
Author(s):  
Yi-Dan Shi ◽  
Li-Qi Liu ◽  
Rong-Bin Liang ◽  
Qian-Min Ge ◽  
Qiu-Yu Li ◽  
...  

Abstract Purpose: Based on fMRI technology, we explored whether children with strabismus and amblyopia (SA) showed significant change in fractional amplitude of low-frequency fluctuation (fALFF) values in specific brain regions compared with healthy controls, and whether this change could point to the clinical manifestations and pathogenesis of children with strabismus to a certain extent.Methods: We enrolled 23 children with SA and same number matched healthy control in the ophthalmology department of the First Affiliated Hospital of Nanchang University, and the whole brain was scanned by rs-fMRI. The fALFF value of each brain area was derived to examine whether there is a statistical difference in the two groups. Meanwhile, ROC curve was made in a view to evaluate whether this difference proves useful as a diagnostic index. Finally, analyze whether changes in the fALFF value of some specific brain regions are related to clinical manifestations.Results: report to HCs children with SA presented a decreased fALFF values in left temporal pole: the superior temporal gyrus, right middle temporal gyrus, right superior frontal gyrus, right supplementary motor area. Meanwhile, they also showed higher fALFF values in specific brain areas, which included left precentral gyrus, left inferior Parietal, left Precuneus.Conclusion: Children with SA showed abnormal fALFF values in different brain regions. Most of these regions were allocated to the visual formation pathway. The eye movement-related pathway or other visual-related pathways, suggesting the pathological mechanism of the patient.


2021 ◽  
Vol 20 (4) ◽  
pp. 885-893
Author(s):  
Yi-Ping Jiang ◽  
Wen-Feng Liu ◽  
Yi-Cong Pan ◽  
Hui-Ye Shu ◽  
Li-Juan Zhang ◽  
...  

2021 ◽  
Vol 13 ◽  
Author(s):  
Lingling Lv ◽  
Hainan Zhang ◽  
Xuling Tan ◽  
Lixia Qin ◽  
Xinke Peng ◽  
...  

Background: Recently, many studies have shown that low vitamin D (VD) levels may be related to an increased risk of Parkinson’s disease (PD), but the underlying mechanisms remain unclear.Objective: To explore the relationship between PD and VD levels, as well as to analyze the effects of VD on spontaneous brain activity and explore the possible mechanism of its involvement in PD risk.Methods: In a cross-sectional study, we quantified the difference in VD levels between 330 PD patients and 209 healthy controls (HC) to explore the correlation between VD and PD risk. We also acquired resting-state Functional Magnetic Resonance Imaging (rs-fMRI) data from 46 PD patients and 21 HC. The PD patients were divided into three groups according to 25(OH)D levels: PD patients with VD deficiency (PD + VDD), PD patients with VD insufficiency (PD + VDI), and PD patients with normal VD (PD + NVD). The effect of VD status on spontaneous neuronal activity in the whole brain was analyzed by measuring the fraction amplitude of low-frequency fluctuation (fALFF).Results: Compared with HC, the PD patients had lower serum 25(OH)D levels (23.60 ± 7.27 vs. 25.60 ± 5.78, P < 0.001). The 25(OH)D level may have a potential dose-dependent effect on the risk of PD (Ptrend = 0.007). A high risk of PD was associated with VD deficiency [25(OH)D < 20 ng/mL, OR = 2.319], and the lowest quartile of 25(OH)D concentration was associated with a high risk of PD (OR = 1.941). In the rs-fMRI study, PD + VDD patients had wider brain regions with altered fALFF than other PD groups when compared with the corresponding HC groups. Both PD + VDD and PD + VDI showed higher fALFF in the cuneus, left precuneus, calcarine cortex and right lingual, as well as lower fALFF in the left middle temporal gyrus. PD + VDD patients also showed higher fALFF in the left superior, middle and inferior frontal gyri, as well as the left precentral gyrus than HC. Among PD patients, there was only a statistically significant difference in fALFF between the PD + VDD and PD + NVD groups. Compared with the PD + NVD group, PD + VDD patients exhibited higher fALFF in the left precentral and left postcentral gyrus, as well as the left inferior parietal lobule.Conclusion: These results demonstrate that PD patients had lower serum VD levels than HC, and VD may have a potential dose-dependent effect on PD risk. Lower serum VD levels can affect the spontaneous neuronal activity of default-mode network (DMN) and visual pathway neurons in PD patients, providing a possible mechanism for its effect on PD risk.


2021 ◽  
Vol 14 (12) ◽  
pp. 1957-1962
Author(s):  
Ling Ling ◽  
◽  
Yu Guo ◽  
Rong-Bin Liang ◽  
Hui-Ye Shu ◽  
...  

AIM: To assess changed spontaneous brain activity in hyperthyroid exophthalmos (HE) patients by the amplitude of the low-frequency fluctuation (ALFF) method, and to analyze the correlation between brain activity and ALFF values in these patients. METHODS: Totally 18 HE and 18 hyperthyroid non-exophthalmos (HNE) patients were enrolled. The participants were tested by resting-state functional magnetic resonance imaging, and receiver operating characteristic (ROC) curves were generated to classify the ALFF values of the study population. Pearson’s correlation analysis was utilized to evaluate the relationship between the ALFF values obtained from different brain areas and clinical manifestations. RESULTS: Contrary to HNE patients, we observed lower ALFF values in the left calcarine fissure and surrounding cortex (LCFSC) in HE patients. In the ROC curve analysis of the LCFSC, the area under the curve reflected a high degree of accuracy. In addition, there was positive correlation between mean ALFF values of the LCFSC and the best-corrected visual acuity of the affected eyes. CONCLUSION: The study displays abnormal brain activity in LCFSC in patients with HE, which might suggest pathological mechanism of visual impairment of HE patients.


2021 ◽  
pp. 1-21
Author(s):  
Akane Uemichi ◽  
Ryo Oikawa ◽  
Yudai Yamasaki ◽  
Shigehiko Kaneko

Abstract In hospitals, the energy supply is the key to ensuring modern medical care even during power outages due to a disaster. This study qualitatively examined whether the supply-demand balance can be stabilized by the private generator prepared by the hospital building during stand-alone operations under disaster conditions. In the nanogrid of the hospital building, the power quality was examined based on the AC frequency, which characterizes the supply-demand balance. Gas engine generators, emergency diesel generators, photovoltaic panels, and storage batteries were presumed to be the private generators in the hospital building. The output reference values for the emergency diesel and gas engine generators were set using droop control, and the C/D controller enabled synchronized operation. In addition, to keep the AC frequency fluctuation minor, the photovoltaic panels were designed to suppress the output fluctuation using storage batteries. As a result of case studies, the simulator predicts that the frequency fluctuation varies greatly depending on the weather conditions and the fluctuation suppression parameters, even for the same configuration with the same power generation capacity. Therefore, it is preferable to increase the moving average time of the output and reduce the feedback gain of the storage battery to suppress the output fluctuation from the photovoltaics. However, there is a tradeoff between suppressing the output fluctuation and the minimum required storage capacity. Furthermore, since the photovoltaics' output varies with the weather, other private generators' capacity and control parameters significantly impact power quality. The simulator proposed in this study makes it possible to study each hospital's desirable private generator configuration.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoya Fu ◽  
Huabing Li ◽  
Meiqi Yan ◽  
Jindong Chen ◽  
Feng Liu ◽  
...  

Objective: Gastrointestinal (GI) symptoms are fairly common somatic symptoms in depressed patients. The purpose of this study was to explore the influence of concomitant GI symptoms on the fractional amplitude of low-frequency fluctuation (fALFF) patterns in patients with major depressive disorder (MDD) and investigate the connection between aberrant fALFF and clinical characteristics.Methods: This study included 35 MDD patients with GI symptoms (GI-MDD patients), 17 MDD patients without GI symptoms (nGI-MDD patients), and 28 healthy controls (HCs). The fALFF method was used to analyze the resting-state functional magnetic resonance imaging data. Correlation analysis and pattern classification were employed to investigate the relationship of the fALFF patterns with the clinical characteristics of patients.Results: GI-MDD patients exhibited higher scores in the HRSD-17 and suffered more severe insomnia, anxiety/somatization, and weight loss than nGI-MDD patients. GI-MDD patients showed higher fALFF in the right superior frontal gyrus (SFG)/middle frontal gyrus (MFG) and lower fALFF in the left superior medial prefrontal cortex (MPFC) compared with nGI-MDD patients. A combination of the fALFF values of these two clusters could be applied to discriminate GI-MDD patients from nGI-MDD patients, with accuracy, sensitivity, and specificity of 86.54, 94.29, and 70.59%, respectively.Conclusion: GI-MDD patients showed more severe depressive symptoms. Increased fALFF in the right SFG/MFG and decreased fALFF in the left superior MPFC might be distinctive neurobiological features of MDD patients with GI symptoms.


Sign in / Sign up

Export Citation Format

Share Document