scholarly journals Enhanced transmission mediated by guided resonances in metallic gratings coated with dielectric layers

2008 ◽  
Vol 16 (9) ◽  
pp. 6619 ◽  
Author(s):  
Fengqin Wu ◽  
Dezhuan Han ◽  
Xin Li ◽  
Xiaohan Liu ◽  
Jian Zi
2007 ◽  
Vol 2007 ◽  
pp. 1-8 ◽  
Author(s):  
Arvind Battula ◽  
Yalin Lu ◽  
R. J. Knize ◽  
Kitt Reinhardt ◽  
Shaochen Chen

Transmission metallic gratings having the shape of converging-diverging channel (CDC) give an extra degree of freedom to exhibit enhanced transmission resonances. By varying the gap size at the throat of CDC, the spectral locations of the transmission resonance bands can be shifted close to each other and have high transmittance in a very narrow energy band. Hence, the CDC shape metallic gratings can lead to almost perfect transmittance for any desired wavelength by carefully optimizing the metallic material, gap at the throat of CDC, and grating parameters. In addition, a cavity surrounded by the CDC shaped metallic grating and a one-dimensional (1D) photonic crystal (PhC) can lead to an enhanced emission with properties similar to a laser. The large coherence length of the emission is achieved by exploiting the coherence properties of the surface waves on the gratings and PhC. The new multilayer structure can attain the spectral and directional control of emission with onlyp-polarization. The resonance condition inside the cavity is extremely sensitive to the wavelength, which would then lead to high emission in a very narrow wavelength band. Such simple 1D multilayer structure should be easy to fabricate and have applications in photonic circuits, thermophotovoltaics, and potentially in energy efficient incandescent sources.


1998 ◽  
Vol 58 (23) ◽  
pp. 15419-15421 ◽  
Author(s):  
U. Schröter ◽  
D. Heitmann

Author(s):  
R.W. Carpenter

Interest in precipitation processes in silicon appears to be centered on transition metals (for intrinsic and extrinsic gettering), and oxygen and carbon in thermally aged materials, and on oxygen, carbon, and nitrogen in ion implanted materials to form buried dielectric layers. A steadily increasing number of applications of microanalysis to these problems are appearing. but still far less than the number of imaging/diffraction investigations. Microanalysis applications appear to be paced by instrumentation development. The precipitation reaction products are small and the presence of carbon is often an important consideration. Small high current probes are important and cryogenic specimen holders are required for consistent suppression of contamination buildup on specimen areas of interest. Focussed probes useful for microanalysis should be in the range of 0.1 to 1nA, and estimates of spatial resolution to be expected for thin foil specimens can be made from the curves shown in Fig. 1.


Author(s):  
Matthew R. Libera ◽  
Martin Chen

Phase-change erasable optical storage is based on the ability to switch a micron-sized region of a thin film between the crystalline and amorphous states using a diffraction-limited laser as a heat source. A bit of information can be represented as an amorphous spot on a crystalline background, and the two states can be optically identified by their different reflectivities. In a typical multilayer thin-film structure the active (storage) layer is sandwiched between one or more dielectric layers. The dielectric layers provide physical containment and act as a heat sink. A viable phase-change medium must be able to quench to the glassy phase after melting, and this requires proper tailoring of the thermal properties of the multilayer film. The present research studies one particular multilayer structure and shows the effect of an additional aluminum layer on the glass-forming ability.


Author(s):  
D. Zudhistira ◽  
V. Viswanathan ◽  
V. Narang ◽  
J.M. Chin ◽  
S. Sharang ◽  
...  

Abstract Deprocessing is an essential step in the physical failure analysis of ICs. Typically, this is accomplished by techniques such as wet chemical methods, RIE, and mechanical manual polishing. Manual polishing suffers from highly non-uniform delayering particularly for sub 20nm technologies due to aggressive back-end-of-line scaling and porous ultra low-k dielectric films. Recently gas assisted Xe plasma FIB has demonstrated uniform delayering of the metal and dielectric layers, achieving a planar surface of heterogeneous materials. In this paper, the successful application of this technique to delayer sub-20 nm microprocessor chips with real defects to root cause the failure is presented.


Sign in / Sign up

Export Citation Format

Share Document