Precision Xe Plasma FIB Delayering for Physical Failure Analysis of Sub-20 nm Microprocessor Devices

Author(s):  
D. Zudhistira ◽  
V. Viswanathan ◽  
V. Narang ◽  
J.M. Chin ◽  
S. Sharang ◽  
...  

Abstract Deprocessing is an essential step in the physical failure analysis of ICs. Typically, this is accomplished by techniques such as wet chemical methods, RIE, and mechanical manual polishing. Manual polishing suffers from highly non-uniform delayering particularly for sub 20nm technologies due to aggressive back-end-of-line scaling and porous ultra low-k dielectric films. Recently gas assisted Xe plasma FIB has demonstrated uniform delayering of the metal and dielectric layers, achieving a planar surface of heterogeneous materials. In this paper, the successful application of this technique to delayer sub-20 nm microprocessor chips with real defects to root cause the failure is presented.

Author(s):  
Huixian Wu ◽  
James Cargo ◽  
Huixian Wu ◽  
Marvin White

Abstract The integration of copper interconnects and low-K dielectrics will present novel failure modes and reliability issues to failure analysts. This paper discusses failure modes related to Cu/low-K technology. Here, physical failure analysis (FA) techniques including deprocessing and cross-section analysis have been developed. The deprocessing techniques include wet chemical etching, reactive ion etching, chemical mechanical polishing and a combination of these techniques. Case studies on different failure modes related to Cu/low k technology are discussed: copper voiding, copper extrusion; electromigration stress failure; dielectric cracks; delamination-interface adhesion; and FA on circuit-under-pad. For the cross-section analysis of copper/low-K samples, focused ion beam techniques have been developed. Scanning electron microscopy, EDX, and TEM analytical analysis have been used for failure analysis for Cu/low-K technology. Various failure modes and reliability issues have also been addressed.


2012 ◽  
Vol 195 ◽  
pp. 103-106 ◽  
Author(s):  
Kanwal Jit Singh

BEOL Cleans has been and continues to be one of the most mysterious black boxes of semiconductor manufacturing. It has the unenviable task of removing post-plasma processing polymer residues, being compatible with ultra low-k dielectric materials that continue to scale k-value at the expense of material strength, and ensuring that any formulation that accomplishes the above objectives is also compatible with Cu and all other metals on the wafer used for liners or caps. In order to meet the performance requirements of next generation devices, Moore's law mandates continued scaling of dimensions with the additional challenges of size-dependent complexities for BEOL cleans development. Patterning of sub-20 nm features on thin ILD stacks suffers from the problems of etch-induced line undulation [1, 2] and cleans-induced pattern collapse [3]. High aspect ratio's, non-uniform drying, surface tension and low material strength have all been implicated as the root cause for pattern collapse during cleans [4]. Classical equations used to describe pattern collapse for resist lines that rely on 2D beam theory and finite element modeling [5] are not as applicable to patterned low-k dielectrics because material changes such as sidewall polymer residues, lowering of Young's modulus and changing pattern densities present different solid surfaces with widely varying wettability and diffusivity parameters [6, .


Author(s):  
Terence Kane ◽  
Yun Yu Wang

Abstract For 22nm and below technologies which involve as many as fifteen back end of the line (BEOL) metallization levels, these leading edge technology nodes pose real challenges in defect localization and root cause analysis. Due to scaling, the reduction in copper land cross section area is accompanied by increased current density and electromigration failure rates. Time to Dielectric Defect Breakdown (TDDB) shows an increase in fallout with successive technology node from 32nm and below. Similarly, the reduced dielectric thickness increases the electric field stress prompting the necessity for porous, ultra low k dielectric (ULK) films. Defect localization is difficult due to the complexity of these multiple metal layers along with the presence of the porous, low k dielectric films which exhibit shrinkage or void formation when exposed to an e-beam/FIB ion beam > 1keV. Due to the porosity of these ULK dielectric films, they are especially susceptible to gallium ion implantation. It has been reported elsewhere that suppressing copper diffusion at the copper land/cap interface can be achieved by depositing a thin layer of CoWP and doping the copper seed layer with manganese [15, 16, 17]. However, a method for analytically confirming that these approaches for suppressing the copper diffusion do not affect TDDB performance/electromigration behavior must be demonstrated.


Author(s):  
Satish Kodali ◽  
Mia Nasimullah ◽  
Yuting Wei ◽  
Chong Khiam Oh ◽  
Felix Beaudoin

Abstract With increasing complexity involved in advance node semiconductor process development, dependability on parametric test structures has also increased significantly. Test structures play a predominant role throughout the entire development cycle of a product. It becomes very important to understand the root cause of failures at fastest pace to take necessary corrective actions. The use of ultra low K dielectrics for back end of line wafer build for advanced nodes created significant constraints on conventional beam imaging methods for fault isolation. This paper provides a streamlined process flow for root cause identification on shorts on advanced 20 nm and sub-20 nm technologies. Three unique cases are presented to demonstrate three typical situations identified in the process flow. They are blown capacitors, gate leakage, and resistance ladder short isolation.


Author(s):  
Amandine Aubert ◽  
Lionel Dantas de Morais ◽  
Stéphanie Pétremont ◽  
Nathalie Labat ◽  
Hélène Frémont

Abstract This paper presents a new sample preparation process for front side access for die with organic dielectric layers that are encapsulated in plastic packages. The limitation of the standard failure analysis flow is firstly described, showing the damage caused by wet etching. Then, the decapsulation method combining laser ablation and plasma etching is presented. It is completed by the process optimization. The final process makes it possible to perform failure analysis on low-k/Cu technologies in plastic package either by the front side or by the backside of the die.


Author(s):  
Hua Younan ◽  
Chu Susan ◽  
Gui Dong ◽  
Mo Zhiqiang ◽  
Xing Zhenxiang ◽  
...  

Abstract As device feature size continues to shrink, the reducing gate oxide thickness puts more stringent requirements on gate dielectric quality in terms of defect density and contamination concentration. As a result, analyzing gate oxide integrity and dielectric breakdown failures during wafer fabrication becomes more difficult. Using a traditional FA flow and methods some defects were observed after electrical fault isolation using emission microscopic tools such as EMMI and TIVA. Even with some success with conventional FA the root cause was unclear. In this paper, we will propose an analysis flow for GOI failures to improve FA’s success rate. In this new proposed flow both a chemical method, Wright Etch, and SIMS analysis techniques are employed to identify root cause of the GOI failures after EFA fault isolation. In general, the shape of the defect might provide information as to the root cause of the GOI failure, whether related to PID or contamination. However, Wright Etch results are inadequate to answer the questions of whether the failure is caused by contamination or not. If there is a contaminate another technique is required to determine what the contaminant is and where it comes from. If the failure is confirmed to be due to contamination, SIMS is used to further determine the contamination source at the ppm-ppb level. In this paper, a real case of GOI failure will be discussed and presented. Using the new failure analysis flow, the root cause was identified to be iron contamination introduced from a worn out part made of stainless steel.


Author(s):  
E. Widener ◽  
S. Tatti ◽  
P. Schani ◽  
S. Crown ◽  
B. Dunnigan ◽  
...  

Abstract A new 0.5 um 1 Megabit SRAM which employed a double metal, triple poly CMOS process with Tungsten plug metal to poly /silicon contacts was introduced. During burn-in of this product, high currents, apparently due to electrical overstress, were experienced. Electrical analysis showed abnormal supply current characteristics at high voltages. Failure analysis identified the sites of the high currents of the bum-in rejects and discovered cracks in the glue layer prior to Tungsten deposition as the root cause of the failure. The glue layer cracks allowed a reaction with the poly/silicon, causing opens at the bottom of contacts. These floating nodes caused high currents and often latch-up during burn-in. Designed experiments in the wafer fab identified an improved glue layer process, which has been implemented. The new process shows improvement in burn in performance as well as outgoing product quality.


Author(s):  
Hashim Ismail ◽  
Ang Chung Keow ◽  
Kenny Gan Chye Siong

Abstract An output switching malfunction was reported on a bridge driver IC. The electrical verification testing revealed evidence of an earlier over current condition resulting from an abnormal voltage sense during a switching event. Based on these test results, we developed the hypothesis that a threshold voltage mismatch existed between the sense transistor and the output transistor. This paper describes the failure analysis approach we used to characterize the threshold voltage mismatch as well as our approach to determine the root cause, which was trapped charge on the gate oxide of the sense transistor.


Author(s):  
Erik Paul ◽  
Holger Herzog ◽  
Sören Jansen ◽  
Christian Hobert ◽  
Eckhard Langer

Abstract This paper presents an effective device-level failure analysis (FA) method which uses a high-resolution low-kV Scanning Electron Microscope (SEM) in combination with an integrated state-of-the-art nanomanipulator to locate and characterize single defects in failing CMOS devices. The presented case studies utilize several FA-techniques in combination with SEM-based nanoprobing for nanometer node technologies and demonstrate how these methods are used to investigate the root cause of IC device failures. The methodology represents a highly-efficient physical failure analysis flow for 28nm and larger technology nodes.


Author(s):  
Keith Harber ◽  
Steve Brockett

Abstract This paper outlines the failure analysis of a Radio Frequency only (RF-only) failure on a complex Multimode Multiband Power Amplifier (MMPA) module, where slightly lower gain was observed in one mode of operation. 2 port S-parameter information was collected and utilized to help localize the circuitry causing the issue. A slight DC electrical difference was observed, and simulation was utilized to confirm that difference was causing the observed S-parameters. Physical analysis uncovered a very visible cause for the RF-only failure.


Sign in / Sign up

Export Citation Format

Share Document