scholarly journals Influence of polarimetric satellite data measured in the visible region on aerosol detection and on the performance of atmospheric correction procedure over open ocean waters

2011 ◽  
Vol 19 (21) ◽  
pp. 20960 ◽  
Author(s):  
Tristan Harmel ◽  
Malik Chami
2021 ◽  
Vol 13 (24) ◽  
pp. 5051
Author(s):  
Howard R. Gordon

Retrieval of water properties from satellite-borne imagers viewing oceans and coastal areas in the visible region of the spectrum requires removing the effect of the atmosphere, which contributes approximately 80–90% of the measured radiance over the open ocean in the blue spectral region. The Gordon and Wang algorithm originally developed for SeaWiFS (and used with other NASA sensors, e.g., MODIS) forms the basis for many atmospheric removal (correction) procedures. It was developed for application to imagery obtained over the open ocean (Case 1 waters), where the aerosol is usually non-absorbing, and is used operationally to process global data from SeaWiFS, MODIS and VIIRS. Here, I trace the evolution of this algorithm from early NASA aircraft experiments through the CZCS, OCTS, SeaWiFs, MERIS, and finally the MODIS sensors. Strategies to extend the algorithm to situations where the aerosol is strongly absorbing are examined. Its application to sensors with additional and unique capabilities is sketched. Problems associated with atmospheric correction in coastal waters are described.


Author(s):  
Nobuo Takeuchi ◽  
Hiroaki Kuze ◽  
Yasushi Sakurada ◽  
Tamio Takamura ◽  
Shigeru Murata ◽  
...  

2020 ◽  
Vol 12 (6) ◽  
pp. 946 ◽  
Author(s):  
Yafei Luo ◽  
David Doxaran ◽  
Quinten Vanhellemont

This study investigated the use of frequent metre-scale resolution Pléiades satellite imagery to monitor water quality parameters in the highly turbid Gironde Estuary (GE, SW France). Pléiades satellite data were processed and analyzed in two representative test sites of the GE: 1) the maximum turbidity zone and 2) the mouth of the estuary. The main objectives of this study were to: (i) validate the Dark Spectrum Fitting (DSF) atmospheric correction developed by Vanhellemont and Ruddick (2018) applied to Pléiades satellite data recorded over the GE; (ii) highlight the benefits of frequent metre-scale Pléiades observations in highly turbid estuaries by comparing them to previously validated satellite observations made at medium (250/300 m for MODIS, MERIS, OLCI data) and high (20/30 m for SPOT, OLI and MSI data) spatial resolutions. The results show that the DSF allows for an accurate retrieval of water turbidity by inversion of the water reflectance in the near-infrared (NIR) and red wavebands. The difference between Pléiades-derived turbidity and field measurements was proven to be in the order of 10%. To evaluate the spatial variability of water turbidity at metre scale, Pléiades data at 2 m resolution were resampled to 20 m and 250 m to simulate typical coarser resolution sensors. On average, the derived spatial variability in the GE is lower than or equal to 10% and 26%, respectively, in 20-m and 250-m aggregated pixels. Pléiades products not only show, in great detail, the turbidity features in the estuary and river plume, they also allow to map the turbidity inside ports and capture the complex spatial variations of turbidity along the shores of the estuary. Furthermore, the daily acquisition capabilities may provide additional advantages over other satellite constellations when monitoring highly dynamic estuarine systems.


2008 ◽  
Author(s):  
Daniel Schläpfer ◽  
Jan Biesemans ◽  
Andreas Hueni ◽  
Koen Meuleman

Sign in / Sign up

Export Citation Format

Share Document