scholarly journals Are visibility-derived AOT estimates suitable for parameterizing satellite data atmospheric correction algorithms?

2015 ◽  
Vol 36 (6) ◽  
pp. 1675-1688 ◽  
Author(s):  
R.T. Wilson ◽  
E.J. Milton ◽  
J.M. Nield
Author(s):  
Nobuo Takeuchi ◽  
Hiroaki Kuze ◽  
Yasushi Sakurada ◽  
Tamio Takamura ◽  
Shigeru Murata ◽  
...  

2020 ◽  
Vol 12 (6) ◽  
pp. 946 ◽  
Author(s):  
Yafei Luo ◽  
David Doxaran ◽  
Quinten Vanhellemont

This study investigated the use of frequent metre-scale resolution Pléiades satellite imagery to monitor water quality parameters in the highly turbid Gironde Estuary (GE, SW France). Pléiades satellite data were processed and analyzed in two representative test sites of the GE: 1) the maximum turbidity zone and 2) the mouth of the estuary. The main objectives of this study were to: (i) validate the Dark Spectrum Fitting (DSF) atmospheric correction developed by Vanhellemont and Ruddick (2018) applied to Pléiades satellite data recorded over the GE; (ii) highlight the benefits of frequent metre-scale Pléiades observations in highly turbid estuaries by comparing them to previously validated satellite observations made at medium (250/300 m for MODIS, MERIS, OLCI data) and high (20/30 m for SPOT, OLI and MSI data) spatial resolutions. The results show that the DSF allows for an accurate retrieval of water turbidity by inversion of the water reflectance in the near-infrared (NIR) and red wavebands. The difference between Pléiades-derived turbidity and field measurements was proven to be in the order of 10%. To evaluate the spatial variability of water turbidity at metre scale, Pléiades data at 2 m resolution were resampled to 20 m and 250 m to simulate typical coarser resolution sensors. On average, the derived spatial variability in the GE is lower than or equal to 10% and 26%, respectively, in 20-m and 250-m aggregated pixels. Pléiades products not only show, in great detail, the turbidity features in the estuary and river plume, they also allow to map the turbidity inside ports and capture the complex spatial variations of turbidity along the shores of the estuary. Furthermore, the daily acquisition capabilities may provide additional advantages over other satellite constellations when monitoring highly dynamic estuarine systems.


Author(s):  
C. Karakizi ◽  
M. Oikonomou ◽  
K. Karantzalos

An assessment of the spectral discrimination between different vine varieties was undertaken using non-destructive remote sensing observations at the véraison period. During concurrent satellite, aerial and field campaigns, in-situ reflectance data were collected from a spectroradiometer, hyperspectral data were acquired from a UAV and multispectral data from a high-resolution satellite imaging sensor. Data were collected during a three years period (i.e, 2012, 2013 and 2014) over five wine-growing regions, covering more than 1000ha, in Greece. Data for more than twenty different vine varieties were processed and analysed. In particular, reflectance hyperspectral data from a spectroradiometer (GER 1500, Spectra Vista Corporation, 350-1050nm, 512 spectral bands) were calculated from the raw radiance values and then were correlated with the corresponding reflectance observations from the UAV and satellite data. Reflectance satellite data (WorldView-2, 400nm-1040nm, 8 spectral bands, DigitalGlobe), after the radiometric and atmospheric correction of the raw datasets, were classified towards the detection and the discrimination of the different vine varieties. The concurrent observations from in-situ hyperspectral, aerial hyperspectral and satellite multispectral data over the same vines were highly correlated. High correlations were, also, established for the same vine varieties (e.g., Syrah, Sauvignon Blanc) cultivated in different regions. The analysis of in-situ reflectance indicated that certain vine varieties, like Merlot, Sauvignon Blanc, Ksinomavro and Agiorgitiko possess specific spectral properties and detectable behaviour. These observations were, in most cases, in accordance with the classification results from the high resolution satellite data. In particular, Merlot and also Sauvignon Blanc were detected and discriminated with high accuracy rates. Surprisingly different clones from the same variety could be separated (e.g., clones of Syrah), while they were confused with other varieties (e.g., with Riesling).


Author(s):  
S. Wang ◽  
B. Yang ◽  
Y. Zhou ◽  
F. Wang ◽  
R. Zhang ◽  
...  

In order to monitor ice avalanches efficiently under disaster emergency conditions, a snow cover mapping method based on the satellite data of the Sentinels is proposed, in which the coherence and backscattering coefficient image of Synthetic Aperture Radar (SAR) data (Sentinel-1) is combined with the atmospheric correction result of multispectral data (Sentinel-2). The coherence image of the Sentinel-1 data could be segmented by a certain threshold to map snow cover, with the water bodies extracted from the backscattering coefficient image and removed from the coherence segment result. A snow confidence map from Sentinel-2 was used to map the snow cover, in which the confidence values of the snow cover were relatively high. The method can make full use of the acquired SAR image and multispectral image under emergency conditions, and the application potential of Sentinel data in the field of snow cover mapping is exploited. The monitoring frequency can be ensured because the areas obscured by thick clouds are remedied in the monitoring results. The Kappa coefficient of the monitoring results is 0.946, and the data processing time is less than 2 h, which meet the requirements of disaster emergency monitoring.


Sign in / Sign up

Export Citation Format

Share Document