scholarly journals High-speed multi-wavelength Fresnel diffraction imaging

2014 ◽  
Vol 22 (25) ◽  
pp. 30504 ◽  
Author(s):  
Daniel W.E. Noom ◽  
Dirk E. Boonzajer Flaes ◽  
Elias Labordus ◽  
Kjeld S.E. Eikema ◽  
Stefan Witte
2011 ◽  
Author(s):  
Jonathan Potier ◽  
Sebastien Fricker ◽  
Mourad Idir

2021 ◽  
Vol 29 (5) ◽  
pp. 7197
Author(s):  
Yuanyuan Liu ◽  
Qingwen Liu ◽  
You Li ◽  
Bingxin Xu ◽  
Junyong Zhang ◽  
...  

2020 ◽  
Vol 31 (9) ◽  
pp. 094012 ◽  
Author(s):  
Aran Blattler ◽  
Panart Khajornrungruang ◽  
Keisuke Suzuki ◽  
Thitipat Permpatdechakul

Author(s):  
Arda Cakmakci ◽  
Michael Knadler ◽  
Jong Guen Lee

Two pyrometric tools for measuring soot temperature response in fuel-rich flames under unsteady inlet airflow conditions are developed. High-speed pyrometry using a high-speed color camera is used in producing soot temperature distributions, with its results compared with those of global soot temperature response measured using a multi-wavelength pyrometer. For the former, the pixel RGB values pertaining to respective bandwidths of red, green and blue filters are used to calculate temperature and for the latter, the emission from whole flame at 660 nm, 730 nm and 800 nm is used to measure temperature. The combustor, running on Jet-A fuel, achieves unsteady inlet airflow using a siren running at frequencies of 150 and 250 Hz and with modulation levels (RMS) 20–50% of mean velocity. Spatiotemporal response of flame temperature measured by the high speed camera is presented by phase-averaged with average subtracted images and by fast Fourier transform at the modulation frequencies of inlet velocity. Simultaneous measurement of combustor inlet air velocity and flame soot temperature using the multi-wavelength pyrometer is used in calculating the flame transfer function of flame temperature response to unsteady inlet airflow. The results of global temperature and temperature fluctuation from the 3-color pyrometer show qualitative agreement with the local temperature response measured by the high speed camera. Over the range of operating conditions employed, the overall flame temperature fluctuation increases linearly with respect to the inlet velocity fluctuation. The two-dimensional map of flame temperature under unsteady combustion determined using a high-speed digital color camera shows that the local temperature fluctuation during unsteady combustion occurs over relatively small region of flame and its level is greater (∼10–20%) than that of overall temperature fluctuation (∼1%).


1998 ◽  
Vol 4 (S2) ◽  
pp. 376-377
Author(s):  
P. Cloetens ◽  
J. Baruchel ◽  
J.P. Guigay ◽  
W. Ludwig ◽  
L. Mancini ◽  
...  

X-ray imaging started over a century ago. For several decades its only form was absorption radiography, in which contrast is due to local variations in beam attenuation. About forty years ago, a new form of X-ray imagery, Bragg-diffraction imaging or X-ray topography, developed into practical use. It directly reveals crystal defects in the bulk of large single crystals, and paved the way to microelectronics by leading to the growth of large, practically perfect, crystals. The advent of third-generation synchrotron radiation sources of X-rays such as ESRF and APS is now making possible, through the coherence of the X-ray beams, a novel form of radiography, in which contrast arises from phase variations across the transmitted beam, associated with optical path length differences, through Fresnel diffraction. Phase radiography and its three-dimensional companion, X-ray phase tomography, are providing new information on the mechanics of composites as well as on biological materials.


2020 ◽  
Vol 10 (22) ◽  
pp. 8205
Author(s):  
Yoshiyuki Doi ◽  
Toshihide Yoshimatsu ◽  
Yasuhiko Nakanishi ◽  
Satoshi Tsunashima ◽  
Masahiro Nada ◽  
...  

This paper reviews receivers that feature low-loss multimode-output arrayed waveguide gratings (MM-AWGs) for wavelength division multiplexing (WDM) as well as hybrid integration techniques with high-speed throughput of up to 100 Gb/s and beyond. A design of optical coupling between higher-order multimode beams and a photodiode for a flat-top spectral shape is described in detail. The WDM photoreceivers were fabricated with different approaches. A 10-Gb/s photoreceiver was developed for a 1.25-Gb/s baud rate and assembled for eight-channel WDM by mechanical alignment. A receiver with 40-Gb/s throughput was built by using visual alignment for a 10-Gb/s baud rate and four-channel WDM. A 100-Gb/s receiver assembled by active alignment with a four-channel by 25-Gb/s baud rate is the basis for beyond-100 Gb/s and future multi-wavelength integrated devices toward data-centric communications and computing.


2013 ◽  
Vol 470 ◽  
pp. 630-635 ◽  
Author(s):  
Ning Fang Song ◽  
Rui Qi Cui ◽  
Yu Jie Yang ◽  
Xiao Liang Xu

In this paper, a novel method used for Fabry-Perot cavity length's demodulation in high-speed and large scope measurement was proposed. Principle of the method is based on uniqueness of intensity of multiple wavelengths in the scope of Fabry-Perot vibration. This technique offers flexibility of selecting incident wave length and enhances the scope of demodulation of cavity length, compared with that popular triple wave length demodulation. In experiment, multi-wavelength demodulation is demonstrated for measurement of cavity length varying from 110um to 115um and the strain resolution was higher than 0.1um.


2021 ◽  
Author(s):  
David Moss

Abstract We propose and experimentally demonstrate a microwave photonic intensity differentiator based on a Kerr optical comb generated by a compact integrated micro-ring resonator (MRR). The on-chip Kerr optical comb, containing a large number of comb lines, serves as a high-performance multi-wavelength source for the transversal filter, which will greatly reduce the cost, size, and complexity of the system. Moreover, owing to the compactness of the integrated MRR, up to 200-GHz frequency spacing of the Kerr optical comb can be achieved, enabling a potential operation bandwidth of over 100 GHz. By programming and shaping individual comb lines according to the calculated tap weights, a reconfigurable intensity differentiator with variable differentiation orders can be realized. The operation principle is theoretically analyzed, and experimental demonstrations of first-order, second-order, and third-order differentiation functions based on the principle are presented. The radio frequency (RF) amplitude and phase responses of multi-order intensity differentiations are characterized, and system demonstrations of real-time differentiations for Gaussian input signal are also performed. The experimental results show good agreement with theory, confirming the effectiveness of our approach.


Sign in / Sign up

Export Citation Format

Share Document