scholarly journals Pulse-to-pulse alignment based on interference fringes and the second-order temporal coherence function of optical frequency combs for distance measurement

2015 ◽  
Vol 23 (10) ◽  
pp. 13069 ◽  
Author(s):  
Jigui Zhu ◽  
Pengfei Cui ◽  
Yin Guo ◽  
Linghui Yang ◽  
Jiarui Lin
2012 ◽  
Vol 523-524 ◽  
pp. 877-882 ◽  
Author(s):  
Taro Onoe ◽  
Satoru Takahashi ◽  
Kiyoshi Takamasu ◽  
Hirokazu Matsumoto

We develop a new method for high-resolution and contactless distance measurement based on self frequency beats of optical frequency combs. We use two optical frequency comb lasers with Rb-stabilized repetition frequencies for doing accurate distance measurement. The repetition frequencies of the optical frequency combs are different, thus parts of the high frequencies such as several gigahertz of self beats are beat-downed to several megahertz without an RF frequency oscillator. The phases of the beat signals of several megahertz frequencies are measured by a lock-in amplifier with a high resolution and high sensitivity. The new method is applied to distance measurement for objects which have rough-surface in the distance range of several-meters.


2021 ◽  
Vol 11 (15) ◽  
pp. 7122
Author(s):  
Simona Mosca ◽  
Tobias Hansson ◽  
Maria Parisi

Optical frequency comb synthesizers with a wide spectral range are an essential tool for many research areas such as spectroscopy, precision metrology, optical communication, and sensing. Recent studies have demonstrated the direct generation of frequency combs, via second-order processes, that are centered on two different spectral regions separated by an octave. Here, we present the capability of optical quadratic frequency combs for broad-bandwidth spectral emission in unexplored regimes. We consider comb formation under phase-matched conditions in a continuous-wave pumped singly resonant second-harmonic cavity, with large intracavity power and control of the detuning over several cavity line widths. The spectral analysis reveals quite distinctive sidebands that arise far away from the pump, singularly or in a mixed regime together with narrowband frequency combs. Notably, by increasing the input power, the optical frequency lines evolve into widely spaced frequency clusters, and at maximum power, they appear in a wavelength range spanning up to 100 nm. The obtained results demonstrate the power of second-order nonlinearities for direct comb production within a wide range of pump wavelengths.


CLEO: 2014 ◽  
2014 ◽  
Author(s):  
Pascal Del’Haye ◽  
William Loh ◽  
Katja Beha ◽  
Scott B. Papp ◽  
Scott A. Diddams

Sign in / Sign up

Export Citation Format

Share Document