scholarly journals Theoretical analysis of mode conversion by refractive-index perturbation based on a single tilted slot on a silicon waveguide

2020 ◽  
Vol 28 (13) ◽  
pp. 18986
Author(s):  
Chia-Chih Huang ◽  
Chia-Chien Huang
2007 ◽  
Vol 21 (30) ◽  
pp. 5075-5089 ◽  
Author(s):  
HALA M. KHALIL ◽  
MOHAMMED M. SHABAT ◽  
SOFYAN A. TAYA ◽  
MAZEN M. ABADLA

In this work, we present an extensive theoretical analysis of nonlinear optical waveguide sensor. The waveguide under consideration consists of a thin dielectrica film surrounded by a self-focused nonlinear cladding and a linear substrate. The nonlinearity of the cladding is considered to be of Kerr-type. Both cases, when the effective refractive index is greater and when it is smaller than the index of the guiding layer, are discussed. The sensitivity of the effective refractive index to any change in the cladding index in evanescent optical waveguide sensor is derived for TM modes. Closed form analytical expressions and normalized charts are given to provide the conditions required for the sensor to exhibit its maximum sensitivity. The results are compared with those of the well-known linear evanescent waveguide sensors.


2000 ◽  
Vol 77 (SUPPLEMENT) ◽  
pp. 192
Author(s):  
Arthur Ho ◽  
Paul Erickson ◽  
Therese Pham ◽  
Fabrice Manns ◽  
Jean-Marie Parel

2018 ◽  
Vol 32 (22) ◽  
pp. 1850258 ◽  
Author(s):  
Wenlong Liu ◽  
Xuebin Liu ◽  
Qiangqiang Yan ◽  
Simiao Qiang ◽  
Haifeng Pi ◽  
...  

Breaking Lorentz reciprocity is one necessary condition of optical isolator design. Unidirectional wavelength-mode conversion will be realized in a time-dependent system through a short operating range. Based on plasma dispersion effect, generate space-asymmetric periodical time-space modulation on silicon waveguide, and non-reciprocal propagation is realized in the waveguide. The designed unidirectional wavelength-mode conversion waveguide demonstrated that in the forward direction, input 1.55 [Formula: see text]m fundamental mode light signal and then output 1.5492 [Formula: see text]m is of 1st-order mode, while in the backward direction, input 1.5492 [Formula: see text]m is of 1st-order mode light signal and then output 1.5484 [Formula: see text]m is of fundamental mode. Based on this non-reciprocal structure, mode conversion waveguide and two-ring resonance filters were designed then, to accomplish on-chip optical isolation. The scale of the designed isolator is 160 [Formula: see text]m × 60 [Formula: see text]m, and the isolation is 21 dB, revealing perfect application potential.


1966 ◽  
Vol 26 (3) ◽  
pp. 459-479 ◽  
Author(s):  
H. Wong ◽  
D. Bershader

The physical mechanisms underlying the relaxation process leading to thermal equilibrium behind ionizing shock waves in argon have been studied through use of optical techniques. The non-equilibrium condition in the relaxation region was investigated experimentally by measuring the shift in the fringes due to a change in the refractive index of the medium with a Mach–Zehnder interferometer. Both electron- and mass-density profiles from the shock front to the equilibrium region were determined. The experimental work has been supplemented by a theoretical analysis of the ionization mechanism to explain the measured profiles and relaxation times.


Sign in / Sign up

Export Citation Format

Share Document