Direct viewing and measurement of 2-D refractive-index profiles in optical fiber preforms

Author(s):  
I. Sasaki ◽  
D. N. Payne ◽  
R. J. Mansfield
Instruments ◽  
2018 ◽  
Vol 2 (4) ◽  
pp. 23 ◽  
Author(s):  
Marilena Vivona ◽  
Michalis Zervas

We present a non-destructive technique for a combined evaluation of refractive index and active-dopant distribution in the same position along a rare-earth-doped optical fiber preform. The method relies on luminescence measurements, analyzed through an optical tomography technique, to define the active dopant distribution and ray-deflection measurements to calculate the refractive index profile. The concurrent evaluation of both the preform refractive index and the active dopant profiles allows for an accurate establishment of the dopant distribution within the optical core region. This combined information is important for the optimization and development of a range of advanced fibers, used, for example, in a high-power fiber lasers and modern spatial-division-multiplexing optical communication systems. In addition, the non-destructive nature allows the technique to be used to identify the most appropriate preform segment, thus increasing fiber yield and reducing development cycles. We demonstrate the technique on an Yb3+-doped aluminosilicate fiber preform and compare it with independent refractive index and active-dopant measurements. This technique will be useful for quality evaluation and optimization of optical fiber preforms and lends itself to advanced instrumentation.


1997 ◽  
Author(s):  
Brian K. Canfield ◽  
Joshua A. Clearman ◽  
Mark G. Kuzyk ◽  
Christopher S. Kwiatkowski

2002 ◽  
Vol 41 (17) ◽  
pp. 3404 ◽  
Author(s):  
Brian K. Canfield ◽  
Christopher S. Kwiatkowski ◽  
Mark G. Kuzyk

2021 ◽  
Vol 1879 (3) ◽  
pp. 032077
Author(s):  
Maher Khaleel Ibrahim ◽  
Shehab A Kadhim ◽  
Nabeil Ibrahim Fawaz

Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 199
Author(s):  
Yu-Cheng Lin ◽  
Liang-Yü Chen

The generation of lossy mode resonances (LMR) with a metallic oxide film deposited on an optical fiber has attracted the attention of many applications. However, an LMR-based optical fiber sensor is frangible, and therefore it does not allow control of the temperature and is not suited to mass production. This paper aims to develop a temperature-controlled lossy mode resonance (TC-LMR) sensor on an optical planar waveguide with an active temperature control function in which an ITO film is not only used as the LMR resonance but also to provide the heating function to achieve the benefits of compact size and active temperature control. A simple flat model about the heat transfer mechanism is proposed to determine the heating time constant for the applied voltages. The TC-LMR sensor is evaluated experimentally for refractive index measurement using a glycerol solution. The heating temperature functions relative to the controlled voltages for water and glycerol are obtained to verify the performance of the TC-LMR sensor. The TC-LMR sensor is a valuable sensing device that can be used in clinical testing and point of care for programming heating with precise temperature control.


Sign in / Sign up

Export Citation Format

Share Document