scholarly journals Multifocal optical-resolution photoacoustic microscopy in vivo

2011 ◽  
Vol 36 (7) ◽  
pp. 1236 ◽  
Author(s):  
Liang Song ◽  
Konstantin Maslov ◽  
Lihong V. Wang
Author(s):  
Xingxing Chen ◽  
Weizhi Qi ◽  
Lei Xi

Abstract In this study, we propose a deep-learning-based method to correct motion artifacts in optical resolution photoacoustic microscopy (OR-PAM). The method is a convolutional neural network that establishes an end-to-end map from input raw data with motion artifacts to output corrected images. First, we performed simulation studies to evaluate the feasibility and effectiveness of the proposed method. Second, we employed this method to process images of rat brain vessels with multiple motion artifacts to evaluate its performance for in vivo applications. The results demonstrate that this method works well for both large blood vessels and capillary networks. In comparison with traditional methods, the proposed method in this study can be easily modified to satisfy different scenarios of motion corrections in OR-PAM by revising the training sets.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4632 ◽  
Author(s):  
Lin ◽  
Liang ◽  
Jin ◽  
Wang

Optical resolution photoacoustic microscopy (OR-PAM) provides high-resolution, label-free and non-invasive functional imaging for broad biomedical applications. Dual-polarized fiber laser sensors have high sensitivity, low noise, a miniature size, and excellent stability; thus, they have been used in acoustic detection in OR-PAM. Here, we review recent progress in fiber-laser-based ultrasound sensors for photoacoustic microscopy, especially the dual-polarized fiber laser sensor with high sensitivity. The principle, characterization and sensitivity optimization of this type of sensor are presented. In vivo experiments demonstrate its excellent performance in the detection of photoacoustic (PA) signals in OR-PAM. This review summarizes representative applications of fiber laser sensors in OR-PAM and discusses their further improvements.


2014 ◽  
Vol 22 (2) ◽  
pp. 1500 ◽  
Author(s):  
Zhenyuan Yang ◽  
Jianhua Chen ◽  
Junjie Yao ◽  
Riqiang Lin ◽  
Jing Meng ◽  
...  

2020 ◽  
Vol 245 (4) ◽  
pp. 342-347 ◽  
Author(s):  
Arash Dadkhah ◽  
Shuliang Jiao

We have developed a multimodal imaging system, which integrated optical resolution photoacoustic microscopy, optical coherence tomography, optical coherence tomography angiography, and confocal fluorescence microscopy in one platform. The system is able to image complementary features of a biological sample by combining different contrast mechanisms. We achieved fast imaging and large field of view by combining optical scanning with mechanical scanning, similar to our previous publication. We have demonstrated the capability of the multimodal imaging system by imaging a mouse ear in vivo. Impact statement Photoacoustic microscopy-based multimodal imaging technology can provide high-resolution complementary information for biological tissues in vivo. It will potentially bring significant impact on the research and diagnosis of diseases by providing combined structural and functional information.


2014 ◽  
Vol 2 (2) ◽  
pp. 81-86 ◽  
Author(s):  
Wenzhong Liu ◽  
Kathryn M. Schultz ◽  
Kevin Zhang ◽  
Amy Sasman ◽  
Fengli Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document