scholarly journals In vivo functional chronic imaging of a small animal model using optical-resolution photoacoustic microscopy

2009 ◽  
Vol 36 (6Part1) ◽  
pp. 2320-2323 ◽  
Author(s):  
Song Hu ◽  
Konstantin Maslov ◽  
Lihong V. Wang
2015 ◽  
Vol 90 (1) ◽  
pp. 392-399 ◽  
Author(s):  
Gary Wong ◽  
Shihua He ◽  
Haiyan Wei ◽  
Andrea Kroeker ◽  
Jonathan Audet ◽  
...  

ABSTRACT Infections with Sudan virus (SUDV), a member of the genus Ebolavirus , result in a severe hemorrhagic fever with a fatal outcome in over 50% of human cases. The paucity of prophylactics and therapeutics against SUDV is attributed to the lack of a small-animal model to screen promising compounds. By repeatedly passaging SUDV within the livers and spleens of guinea pigs in vivo , a guinea pig-adapted SUDV variant (SUDV-GA) uniformly lethal to these animals, with a 50% lethal dose (LD 50 ) of 5.3 × 10 −2 50% tissue culture infective doses (TCID 50 ), was developed. Animals infected with SUDV-GA developed high viremia and died between 9 and 14 days postinfection. Several hallmarks of SUDV infection, including lymphadenopathy, increased liver enzyme activities, and coagulation abnormalities, were observed. Virological analyses and gross pathology, histopathology, and immunohistochemistry findings indicate that SUDV-GA replicates in the livers and spleens of infected animals similarly to SUDV infections in nonhuman primates. These developments will accelerate the development of specific medical countermeasures in preparation for a future disease outbreak due to SUDV. IMPORTANCE A disease outbreak due to Ebola virus (EBOV), suspected to have emerged during December 2013 in Guinea, with over 11,000 dead and 28,000 infected, is finally winding down. Experimental EBOV vaccines and treatments were administered to patients under compassionate circumstances with promising results, and availability of an approved countermeasure appears to be close. However, the same range of experimental candidates against a potential disease outbreak caused by other members of the genus Ebolavirus , such as Sudan virus (SUDV), is not readily available. One bottleneck contributing to this situation is the lack of a small-animal model to screen promising drugs in an efficient and economical manner. To address this, we have generated a SUDV variant (SUDV-GA) that is uniformly lethal to guinea pigs. Animals infected with SUDV-GA develop disease similar to that of SUDV-infected humans and monkeys. We believe that this model will significantly accelerate the development of life-saving measures against SUDV infections.


2016 ◽  
Vol 35 (1) ◽  
pp. 23-31 ◽  
Author(s):  
John T. Martin ◽  
Dong Hwa Kim ◽  
Andrew H. Milby ◽  
Christian G. Pfeifer ◽  
Lachlan J. Smith ◽  
...  

2017 ◽  
Vol 16 ◽  
pp. 153601211771263 ◽  
Author(s):  
Benjamin L. Franc ◽  
Sam Goth ◽  
John MacKenzie ◽  
Xiaojuan Li ◽  
Joseph Blecha ◽  
...  

2012 ◽  
Vol 5 ◽  
pp. IDRT.S10652
Author(s):  
Takashi Irie ◽  
Elena Carnero ◽  
Adolfo García-Sastre ◽  
Ronald N. Harty

The M40 VSV recombinant was engineered to contain overlapping PTAP and PPxY L-domain motifs and flanking residues from the VP40 protein of Ebola virus. Replication of M40 in cell culture is virtually indistinguishable from that of control viruses. However, the presence of the Ebola PTAP motif in the M40 recombinant enabled this virus to interact with and recruit host Tsg101, which was packaged into M40 virions. In this brief report, we compared replication and the pathogenic profiles of M40 and the parental virus M51R in mice to determine whether the presence of the Ebola L-domains and flanking residues altered in vivo characteristics of the virus. Overall, the in vivo characteristics of M40 were similar to those of the parental M51R virus, indicating that the Ebola sequences did not alter pathogenesis of VSV in this small animal model of infection.


Virology ◽  
2014 ◽  
Vol 448 ◽  
pp. 65-73 ◽  
Author(s):  
Rico Blochmann ◽  
Christoph Curths ◽  
Cheick Coulibaly ◽  
Klaus Cichutek ◽  
Reinhard Kurth ◽  
...  

2009 ◽  
Vol 55 (10) ◽  
pp. 1783-1793 ◽  
Author(s):  
Leen Lootens ◽  
Philip Meuleman ◽  
Oscar J Pozo ◽  
Peter Van Eenoo ◽  
Geert Leroux-Roels ◽  
...  

Abstract Background: Adequate detection of designer steroids in the urine of athletes is still a challenge in doping control analysis and requires knowledge of steroid metabolism. In this study we investigated whether uPA+/+-SCID mice carrying functional primary human hepatocytes in their liver would provide a suitable alternative small animal model for the investigation of human steroid metabolism in vivo. Methods: A quantitative method based on liquid chromatography–tandem mass spectrometry (LC-MS/MS) was developed and validated for the urinary detection of 7 known methandienone metabolites. Application of this method to urine samples from humanized mice after methandienone administration allowed for comparison with data from in vivo human samples and with reported methandienone data from in vitro hepatocyte cultures. Results: The LC-MS/MS method validation in mouse and human urine indicated good linearity, precision, and recovery. Using this method we quantified 6 of 7 known human methandienone metabolites in the urine of chimeric mice, whereas in control nonchimeric mice we detected only 2 metabolites. These results correlated very well with methandienone metabolism in humans. In addition, we detected 4 isomers of methandienone metabolites in both human and chimeric mouse urine. One of these isomers has never been reported before. Conclusions: The results of this proof-of-concept study indicate that the human liver–uPA+/+-SCID mouse appears to be a suitable small animal model for the investigation of human-type metabolism of anabolic steroids and possibly also for other types of drugs and medications. .


2009 ◽  
Vol 31 (1) ◽  
pp. 34-41 ◽  
Author(s):  
Y.K. Luu ◽  
S. Lublinsky ◽  
E. Ozcivici ◽  
E. Capilla ◽  
J.E. Pessin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document