capillary networks
Recently Published Documents


TOTAL DOCUMENTS

200
(FIVE YEARS 37)

H-INDEX

35
(FIVE YEARS 4)

Author(s):  
Madjid Soltani

Abstract Angiogenesis, as part of cancer development, involves hierarchical complicated events and processes. Multiple studies have revealed the significance of the formation and structure of tumor-induced capillary networks. In this study, a discrete mathematical model of angiogenesis is studied and modified to capture the realistic physics of capillary network formation. Modifications are performed on the mathematical foundations of an existing discrete model of angiogenesis. The main modifications are the imposition of the matrix density effect, implementation of realistic boundary and initial conditions, and improvement of the method of governing equations based on physical observation. Results show that endothelial cells accelerate angiogenesis and capillary formation as they migrate toward the tumor and clearly exhibit the physical concept of haptotactic movement. On the other hand, consideration of blood flow-induced stress leads to a dynamic adaptive vascular network of capillaries which intelligibly reflects the brush border effect . The present modified model of capillary network formation is based on the physical rationale that defines a clear mathematical and physical interpretation of angiogenesis, which is likely to be used in cancer development modeling and anti-angiogenic therapies.


2021 ◽  
Author(s):  
Liang Zhu ◽  
Mengqi Wang ◽  
Yin Liu ◽  
Weijie Zhang ◽  
Hequn Zhang ◽  
...  

In the cerebral cortex, the vasculature plays important homeostatic functions, especially at the highly connected complex capillary networks. The association of focal capillary ischemia with the neurodegenerative disease as well as the laminar vascular dynamics have prompted studies of vascular micro-occlusion via photothrombosis. However, technical challenges of this approach remain, including increased temporal precision of occlusion, increasing the depth of vascular occlusion, understanding how such micro-occlusion impacts local blood flow, and ultimately the neuronal effects of such changes. Here, we have developed a novel approach that employs ultra-fast multiphoton light to induce focal Rose Bengal-induced photothrombosis. We demonstrated induction of highly precise and fast occlusion of microvessels at various types and depths. The change of the microvascular architecture and hemodynamics after occlusion revealed the autoregulation and significant difference between upstream vs downstream in layer 2/3. Further, we found that micro-occlusion at two different layers within the same vascular arbor results in distinct effects on the acute flow redistribution mechanism. To examine neuronal effects of such micro-occlusion, we produced infarct of capillaries surrounding a labeled target neuron and found this induces dramatic and rapid lamina-specific degeneration in neuronal dendritic architecture. In sum, our technique enhanced the precision and power of the photothrombotic study of microvascular function. The current results pointed to the importance of laminar scale regulation within the microvascular network, a finding which may be relevant for models of neurovascular disease.


2021 ◽  
Vol 384 ◽  
pp. 113975
Author(s):  
Marvin Fritz ◽  
Prashant K. Jha ◽  
Tobias Köppl ◽  
J. Tinsley Oden ◽  
Andreas Wagner ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Kalpani N. Udeni Galpayage Dona ◽  
Jonathan Franklin Hale ◽  
Tobi Salako ◽  
Akanksha Anandanatarajan ◽  
Kiet A. Tran ◽  
...  

Tissue engineering of the blood-brain barrier (BBB) in vitro has been rapidly expanding to address the challenges of mimicking the native structure and function of the BBB. Most of these models utilize 2D conventional microfluidic techniques. However, 3D microvascular models offer the potential to more closely recapitulate the cytoarchitecture and multicellular arrangement of in vivo microvasculature, and also can recreate branching and network topologies of the vascular bed. In this perspective, we discuss current 3D brain microvessel modeling techniques including templating, printing, and self-assembling capillary networks. Furthermore, we address the use of biological matrices and fluid dynamics. Finally, key challenges are identified along with future directions that will improve development of next generation of brain microvasculature models.


2021 ◽  
Author(s):  
Nicole L Jacobsen ◽  
Charles E Norton ◽  
Rebecca L Shaw ◽  
DDW Cornelison ◽  
Steven S Segal

Myofibers regenerate following injury, however the microvasculature must also recover to restore skeletal muscle function. We aimed to define the nature of microvascular damage and repair during skeletal muscle injury and regeneration induced by BaCl2. To test the hypothesis that microvascular disruption occurred secondary to myofiber injury in mice, isolated microvessels were exposed to BaCl2 or the myotoxin was injected into the gluteus maximus (GM) muscle. In isolated microvessels, BaCl2 depolarized smooth muscle cells and endothelial cells while increasing [Ca2+]i, but did not elicit cell death. At 1 day post injury (dpi) of the GM, capillary fragmentation coincided with myofiber degeneration while arteriolar and venular networks remained intact; neutrophil depletion before injury did not prevent capillary damage. Perfused capillary networks reformed by 5 dpi in association with more terminal arterioles and were dilated through 10 dpi; with no change in microvascular area or branch point number in regenerating networks, fewer capillaries aligned with myofibers and capillary networks were no longer organized into microvascular units. By 21 dpi, capillary orientation and organization had nearly recovered to that in uninjured GM. We conclude that following their disruption secondary to myofiber damage, capillaries regenerate as disorganized networks that remodel while regenerated myofibers mature.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2198
Author(s):  
Franziska Bayer ◽  
Olga Dremova ◽  
My Phung Khuu ◽  
Könül Mammadova ◽  
Giulia Pontarollo ◽  
...  

The gastrointestinal tract is a functionally and anatomically segmented organ that is colonized by microbial communities from birth. While the genetics of mouse gut development is increasingly understood, how nutritional factors and the commensal gut microbiota act in concert to shape tissue organization and morphology of this rapidly renewing organ remains enigmatic. Here, we provide an overview of embryonic mouse gut development, with a focus on the intestinal vasculature and the enteric nervous system. We review how nutrition and the gut microbiota affect the adaptation of cellular and morphologic properties of the intestine, and how these processes are interconnected with innate immunity. Furthermore, we discuss how nutritional and microbial factors impact the renewal and differentiation of the epithelial lineage, influence the adaptation of capillary networks organized in villus structures, and shape the enteric nervous system and the intestinal smooth muscle layers. Intriguingly, the anatomy of the gut shows remarkable flexibility to nutritional and microbial challenges in the adult organism.


2021 ◽  
Vol 118 (26) ◽  
pp. e2100866118
Author(s):  
Vanessa Coelho-Santos ◽  
Andrée-Anne Berthiaume ◽  
Sharon Ornelas ◽  
Heidi Stuhlmann ◽  
Andy Y. Shih

Capillary networks are essential for distribution of blood flow through the brain, and numerous other homeostatic functions, including neurovascular signal conduction and blood–brain barrier integrity. Accordingly, the impairment of capillary architecture and function lies at the root of many brain diseases. Visualizing how brain capillary networks develop in vivo can reveal innate programs for cerebrovascular growth and repair. Here, we use longitudinal two-photon imaging through noninvasive thinned skull windows to study a burst of angiogenic activity during cerebrovascular development in mouse neonates. We find that angiogenesis leading to the formation of capillary networks originated exclusively from cortical ascending venules. Two angiogenic sprouting activities were observed: 1) early, long-range sprouts that directly connected venules to upstream arteriolar input, establishing the backbone of the capillary bed, and 2) short-range sprouts that contributed to expansion of anastomotic connectivity within the capillary bed. All nascent sprouts were prefabricated with an intact endothelial lumen and pericyte coverage, ensuring their immediate perfusion and stability upon connection to their target vessels. The bulk of this capillary expansion spanned only 2 to 3 d and contributed to an increase of blood flow during a critical period in cortical development.


2021 ◽  
Vol 7 (2) ◽  
pp. 1-4
Author(s):  
Hidekazu Sekine ◽  

The development of organ-like tissues is the next major challenge facing regenerative medicine. Organ-like structures have been synthesized on a small scale, but overcoming current problems with cell sourcing and scalability will facilitate the creation of cardiac assist devices and organs for transplantation. A major obstacle to generating Three-Dimensional (3D) tissues is that diffusion is inadequate for the supply of oxygen/nutrients and removal of waste products, which limits the thickness of the structure to about 0.1 mm


2021 ◽  
Vol 12 ◽  
Author(s):  
Madeleine Lu ◽  
Celeste K. Kanne ◽  
Riley C. Reddington ◽  
Dalia L. Lezzar ◽  
Vivien A. Sheehan ◽  
...  

Biomarker development is a key clinical research need in sickle cell disease (SCD). Hemorheological parameters are excellent candidates as abnormal red blood cell (RBC) rheology plays a critical role in SCD pathophysiology. Here we describe a microfluidic device capable of evaluating RBC deformability and adhesiveness concurrently, by measuring their effect on perfusion of an artificial microvascular network (AMVN) that combines microchannels small enough to require RBC deformation, and laminin (LN) coating on channel walls to model intravascular adhesion. Each AMVN device consists of three identical capillary networks, which can be coated with LN (adhesive) or left uncoated (non-adhesive) independently. The perfusion rate for sickle RBCs in the LN-coated networks (0.18 ± 0.02 nL/s) was significantly slower than in non-adhesive networks (0.20 ± 0.02 nL/s), and both were significantly slower than the perfusion rate for normal RBCs in the LN-coated networks (0.22 ± 0.01 nL/s). Importantly, there was no overlap between the ranges of perfusion rates obtained for sickle and normal RBC samples in the LN-coated networks. Interestingly, treatment with poloxamer 188 decreased the perfusion rate for sickle RBCs in LN-coated networks in a dose-dependent manner, contrary to previous studies with conventional assays, but in agreement with the latest clinical trial which showed no clinical benefit. Overall, these findings suggest the potential utility of the adhesive AMVN device for evaluating the effect of novel curative and palliative therapies on the hemorheological status of SCD patients during clinical trials and in post-market clinical practice.


Diagnostics ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 685
Author(s):  
Bitewulign Kassa Mekonnen ◽  
Tung-Han Hsieh ◽  
Dian-Fu Tsai ◽  
Shien-Kuei Liaw ◽  
Fu-Liang Yang ◽  
...  

The segmentation of capillaries in human skin in full-field optical coherence tomography (FF-OCT) images plays a vital role in clinical applications. Recent advances in deep learning techniques have demonstrated a state-of-the-art level of accuracy for the task of automatic medical image segmentation. However, a gigantic amount of annotated data is required for the successful training of deep learning models, which demands a great deal of effort and is costly. To overcome this fundamental problem, an automatic simulation algorithm to generate OCT-like skin image data with augmented capillary networks (ACNs) in a three-dimensional volume (which we called the ACN data) is presented. This algorithm simultaneously acquires augmented FF-OCT and corresponding ground truth images of capillary structures, in which potential functions are introduced to conduct the capillary pathways, and the two-dimensional Gaussian function is utilized to mimic the brightness reflected by capillary blood flow seen in real OCT data. To assess the quality of the ACN data, a U-Net deep learning model was trained by the ACN data and then tested on real in vivo FF-OCT human skin images for capillary segmentation. With properly designed data binarization for predicted image frames, the testing result of real FF-OCT data with respect to the ground truth achieved high scores in performance metrics. This demonstrates that the proposed algorithm is capable of generating ACN data that can imitate real FF-OCT skin images of capillary networks for use in research and deep learning, and that the model for capillary segmentation could be of wide benefit in clinical and biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document