scholarly journals Reliable deep-learning-based phase imaging with uncertainty quantification

Optica ◽  
2019 ◽  
Vol 6 (5) ◽  
pp. 618 ◽  
Author(s):  
Yujia Xue ◽  
Shiyi Cheng ◽  
Yunzhe Li ◽  
Lei Tian
Optica ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 332
Author(s):  
Yujia Xue ◽  
Shiyi Cheng ◽  
Yunzhe Li ◽  
Lei Tian

Author(s):  
Moloud Abdar ◽  
Maryam Samami ◽  
Sajjad Dehghani Mahmoodabad ◽  
Thang Doan ◽  
Bogdan Mazoure ◽  
...  

2021 ◽  
Author(s):  
Ryan Santoso ◽  
Xupeng He ◽  
Marwa Alsinan ◽  
Hyung Kwak ◽  
Hussein Hoteit

Abstract Automatic fracture recognition from borehole images or outcrops is applicable for the construction of fractured reservoir models. Deep learning for fracture recognition is subject to uncertainty due to sparse and imbalanced training set, and random initialization. We present a new workflow to optimize a deep learning model under uncertainty using U-Net. We consider both epistemic and aleatoric uncertainty of the model. We propose a U-Net architecture by inserting dropout layer after every "weighting" layer. We vary the dropout probability to investigate its impact on the uncertainty response. We build the training set and assign uniform distribution for each training parameter, such as the number of epochs, batch size, and learning rate. We then perform uncertainty quantification by running the model multiple times for each realization, where we capture the aleatoric response. In this approach, which is based on Monte Carlo Dropout, the variance map and F1-scores are utilized to evaluate the need to craft additional augmentations or stop the process. This work demonstrates the existence of uncertainty within the deep learning caused by sparse and imbalanced training sets. This issue leads to unstable predictions. The overall responses are accommodated in the form of aleatoric uncertainty. Our workflow utilizes the uncertainty response (variance map) as a measure to craft additional augmentations in the training set. High variance in certain features denotes the need to add new augmented images containing the features, either through affine transformation (rotation, translation, and scaling) or utilizing similar images. The augmentation improves the accuracy of the prediction, reduces the variance prediction, and stabilizes the output. Architecture, number of epochs, batch size, and learning rate are optimized under a fixed-uncertain training set. We perform the optimization by searching the global maximum of accuracy after running multiple realizations. Besides the quality of the training set, the learning rate is the heavy-hitter in the optimization process. The selected learning rate controls the diffusion of information in the model. Under the imbalanced condition, fast learning rates cause the model to miss the main features. The other challenge in fracture recognition on a real outcrop is to optimally pick the parental images to generate the initial training set. We suggest picking images from multiple sides of the outcrop, which shows significant variations of the features. This technique is needed to avoid long iteration within the workflow. We introduce a new approach to address the uncertainties associated with the training process and with the physical problem. The proposed approach is general in concept and can be applied to various deep-learning problems in geoscience.


2021 ◽  
Author(s):  
Xin Qian ◽  
Hao Ding ◽  
Fajing Li ◽  
Shouping Nie ◽  
Caojin Yuan ◽  
...  

Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1078
Author(s):  
Ruxandra Stoean ◽  
Catalin Stoean ◽  
Miguel Atencia ◽  
Roberto Rodríguez-Labrada ◽  
Gonzalo Joya

Uncertainty quantification in deep learning models is especially important for the medical applications of this complex and successful type of neural architectures. One popular technique is Monte Carlo dropout that gives a sample output for a record, which can be measured statistically in terms of average probability and variance for each diagnostic class of the problem. The current paper puts forward a convolutional–long short-term memory network model with a Monte Carlo dropout layer for obtaining information regarding the model uncertainty for saccadic records of all patients. These are next used in assessing the uncertainty of the learning model at the higher level of sets of multiple records (i.e., registers) that are gathered for one patient case by the examining physician towards an accurate diagnosis. Means and standard deviations are additionally calculated for the Monte Carlo uncertainty estimates of groups of predictions. These serve as a new collection where a random forest model can perform both classification and ranking of variable importance. The approach is validated on a real-world problem of classifying electrooculography time series for an early detection of spinocerebellar ataxia 2 and reaches an accuracy of 88.59% in distinguishing between the three classes of patients.


2020 ◽  
Vol 28 (19) ◽  
pp. 28140
Author(s):  
Jiaosheng Li ◽  
Qinnan Zhang ◽  
Liyun Zhong ◽  
Jindong Tian ◽  
Giancarlo Pedrini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document