scholarly journals Ranking Information Extracted from Uncertainty Quantification of the Prediction of a Deep Learning Model on Medical Time Series Data

Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1078
Author(s):  
Ruxandra Stoean ◽  
Catalin Stoean ◽  
Miguel Atencia ◽  
Roberto Rodríguez-Labrada ◽  
Gonzalo Joya

Uncertainty quantification in deep learning models is especially important for the medical applications of this complex and successful type of neural architectures. One popular technique is Monte Carlo dropout that gives a sample output for a record, which can be measured statistically in terms of average probability and variance for each diagnostic class of the problem. The current paper puts forward a convolutional–long short-term memory network model with a Monte Carlo dropout layer for obtaining information regarding the model uncertainty for saccadic records of all patients. These are next used in assessing the uncertainty of the learning model at the higher level of sets of multiple records (i.e., registers) that are gathered for one patient case by the examining physician towards an accurate diagnosis. Means and standard deviations are additionally calculated for the Monte Carlo uncertainty estimates of groups of predictions. These serve as a new collection where a random forest model can perform both classification and ranking of variable importance. The approach is validated on a real-world problem of classifying electrooculography time series for an early detection of spinocerebellar ataxia 2 and reaches an accuracy of 88.59% in distinguishing between the three classes of patients.

2020 ◽  
Vol 12 (01) ◽  
pp. 2050001
Author(s):  
Yadigar N. Imamverdiyev ◽  
Fargana J. Abdullayeva

In this paper, a fault prediction method for oil well equipment based on the analysis of time series data obtained from multiple sensors is proposed. The proposed method is based on deep learning (DL). For this purpose, comparative analysis of single-layer long short-term memory (LSTM) with the convolutional neural network (CNN) and stacked LSTM methods is provided. To demonstrate the efficacy of the proposed method, some experiments are conducted on the real data set obtained from eight sensors installed in oil wells. In this paper, compared to the single-layer LSTM model, the CNN and stacked LSTM predicted the faulty time series with a minimal loss.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Nahla F. Omran ◽  
Sara F. Abd-el Ghany ◽  
Hager Saleh ◽  
Abdelmgeid A. Ali ◽  
Abdu Gumaei ◽  
...  

The novel coronavirus disease (COVID-19) is regarded as one of the most imminent disease outbreaks which threaten public health on various levels worldwide. Because of the unpredictable outbreak nature and the virus’s pandemic intensity, people are experiencing depression, anxiety, and other strain reactions. The response to prevent and control the new coronavirus pneumonia has reached a crucial point. Therefore, it is essential—for safety and prevention purposes—to promptly predict and forecast the virus outbreak in the course of this troublesome time to have control over its mortality. Recently, deep learning models are playing essential roles in handling time-series data in different applications. This paper presents a comparative study of two deep learning methods to forecast the confirmed cases and death cases of COVID-19. Long short-term memory (LSTM) and gated recurrent unit (GRU) have been applied on time-series data in three countries: Egypt, Saudi Arabia, and Kuwait, from 1/5/2020 to 6/12/2020. The results show that LSTM has achieved the best performance in confirmed cases in the three countries, and GRU has achieved the best performance in death cases in Egypt and Kuwait.


Author(s):  
Pradeep Lall ◽  
Tony Thomas ◽  
Ken Blecker

Abstract This study focuses on the feature vector identification and Remaining Useful Life (RUL) estimation of SAC305 solder alloy PCB's of two different configurations during varying conditions of temperature and vibration. The feature vectors are identified using the strain signals acquired from four symmetrical locations of the PCB at regular intervals during vibration. Two different types of experiments are employed to characterize the PCB's dynamic changes with varying temperature and acceleration levels. The strain signals acquired during each of these experiments are compared based on both time and frequency domain characteristics. Different statistical and frequency-based techniques were used to identify the strain signal variations with changes in the environment and loading conditions. The feature vectors in predicting failure at a constant working temperature and load were identified, and as an extension to this work, the effectiveness of the feature vectors during varying conditions of temperature and acceleration levels are investigated. The remaining Useful Life of the packages was estimated using a deep learning approach based on Long Short Term Memory (LSTM) network. This technique can identify the underlying patterns in multivariate time series data that can predict the packages' life. The autocorrelation function's residuals were used as the multivariate time series data in conjunction with the LSTM deep learning technique to forecast the packages' life at different varying temperatures and acceleration levels during vibration.


2021 ◽  
Author(s):  
Vanshika Vats ◽  
Aditya Nagori ◽  
Pradeep Singh ◽  
Raman Dutt ◽  
Harsh Bandhey ◽  
...  

BACKGROUND Shock is one of the major killers in Intensive Care Units and early interventions can potentially reverse it. In this study, we advance a non-contact thermal imaging modality for continuous monitoring and prediction of hemodynamic shock in advance. OBJECTIVE We aim to monitor and predict the advent of hemodynamic shock 6 hours in advance using an automated non-contact thermal imaging decision pipeline. METHODS Thermal Videos were captured in a Pediatric ICU-setting along with vitals time-series data. Deep-learning-based body-part segmentation models were trained to extract the Center-to-Peripheral temperature value difference from the videos. Extracted time-series data along with heart rate was finally analyzed using Long-Short Term Memory models to predict the shock status up to the next 6 hours. RESULTS 103,936 frames from 406 non-contact thermal videos were recorded longitudinally upon 22 patients. Our models were able to predict the shock well till 6 hours of lead time using thermal information and achieved the best area under the receiver operating characteristics curve of 0.81±0.06 and area under the precision-recall curve of 0.78±0.05 at 5 hours, providing sufficient time to stabilize the patient. CONCLUSIONS Our approach leverages thermal imaging as a non-invasive and non-contact modality to continuously monitor hemodynamic shock, and thus, provides a reliable shock prediction using an automated decision pipeline that can provide better care and save lives.  CLINICALTRIAL None


Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 360-374
Author(s):  
Yuan Pei ◽  
Lei Zhenglin ◽  
Zeng Qinghui ◽  
Wu Yixiao ◽  
Lu Yanli ◽  
...  

Abstract The load of the showcase is a nonlinear and unstable time series data, and the traditional forecasting method is not applicable. Deep learning algorithms are introduced to predict the load of the showcase. Based on the CEEMD–IPSO–LSTM combination algorithm, this paper builds a refrigerated display cabinet load forecasting model. Compared with the forecast results of other models, it finally proves that the CEEMD–IPSO–LSTM model has the highest load forecasting accuracy, and the model’s determination coefficient is 0.9105, which is obviously excellent. Compared with other models, the model constructed in this paper can predict the load of showcases, which can provide a reference for energy saving and consumption reduction of display cabinet.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tuan D. Pham

AbstractAutomated analysis of physiological time series is utilized for many clinical applications in medicine and life sciences. Long short-term memory (LSTM) is a deep recurrent neural network architecture used for classification of time-series data. Here time–frequency and time–space properties of time series are introduced as a robust tool for LSTM processing of long sequential data in physiology. Based on classification results obtained from two databases of sensor-induced physiological signals, the proposed approach has the potential for (1) achieving very high classification accuracy, (2) saving tremendous time for data learning, and (3) being cost-effective and user-comfortable for clinical trials by reducing multiple wearable sensors for data recording.


Sign in / Sign up

Export Citation Format

Share Document