scholarly journals Optical and mechanical study of size-controlled Cu particles synthesized by electrodeposition

OSA Continuum ◽  
2021 ◽  
Author(s):  
Baoshuo Yang ◽  
Yuan Ai ◽  
Xiaowei Liu
1992 ◽  
Vol 36 (5) ◽  
pp. 1087-1091
Author(s):  
Takashi Nakamura ◽  
Tatsuo Matsumoto ◽  
Aogu Imanishi ◽  
Toshizumi Hino ◽  
Takao Maruyama

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hwan-Seop Yeo ◽  
Kwanjae Lee ◽  
Young Chul Sim ◽  
Seoung-Hwan Park ◽  
Yong-Hoon Cho

Abstract Optical polarization is an indispensable component in photonic applications, the orthogonality of which extends the degree of freedom of information, and strongly polarized and highly efficient small-size emitters are essential for compact polarization-based devices. We propose a group III-nitride quantum wire for a highly-efficient, strongly-polarized emitter, the polarization anisotropy of which stems solely from its one-dimensionality. We fabricated a site-selective and size-controlled single quantum wire using the geometrical shape of a three-dimensional structure under a self-limited growth mechanism. We present a strong and robust optical polarization anisotropy at room temperature emerging from a group III-nitride single quantum wire. Based on polarization-resolved spectroscopy and strain-included 6-band k·p calculations, the strong anisotropy is mainly attributed to the anisotropic strain distribution caused by the one-dimensionality, and its robustness to temperature is associated with an asymmetric quantum confinement effect.


Author(s):  
Zahra Heydari ◽  
Ibrahim Zarkesh ◽  
Mohammad-Hossein Ghanian ◽  
Mahdokht H. Aghdaei ◽  
Svetlana Kotova ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Hualong Chen ◽  
Yajing Liu ◽  
Xuebo Cheng ◽  
Senbiao Fang ◽  
Yuli Sun ◽  
...  

2021 ◽  
Author(s):  
Ping-Ru Su ◽  
Tao Wang ◽  
Pan-Pan Zhou ◽  
Xiao-Xi Yang ◽  
Xiao-Xia Feng ◽  
...  

Abstract Design and engineering of highly efficient emitting materials with assembly-induced luminescence, such as room temperature phosphorescence (RTP) and aggregation-induced emission (AIE), have stimulated extensive efforts. Here, we propose a new strategy to obtain size-controlled Eu3+-complex nanoparticles (Eu-NPs) with self-assembly induced luminescence (SAIL) characteristics without encapsulation or hybridization. Compared with previous RTP or AIE materials, the SAIL phenomena of increased luminescence intensity and lifetime in aqueous solution for the proposed Eu-NPs are due to the combined effect of self-assembly in confining the molecular motion and shielding the water quenching. As a proof of concept, we also show that this system can be further applied in bioimaging, temperature measurement and HClO sensing. The SAIL activity of the rare-earth (RE) system proposed here offers a further step forward on the roadmap for the development of RE light conversion systems and their integration in bioimaging and therapy applications.


Sign in / Sign up

Export Citation Format

Share Document