High Speed Electromechanical Shutter for Time Resolved Spectroscopy

1964 ◽  
Vol 18 (2) ◽  
pp. 33-35 ◽  
Author(s):  
P. A. Kendall
1981 ◽  
Vol 52 (7) ◽  
pp. 1003-1009 ◽  
Author(s):  
Y. Takagi ◽  
M. Sumitani ◽  
K. Yoshihara

1962 ◽  
Vol 33 (7) ◽  
pp. 765-766 ◽  
Author(s):  
Frank R. Schwartz ◽  
Benjamin J. Pernick

Author(s):  
Oleg Bostanjoglo ◽  
Peter Thomsen-Schmidt

Thin GexTe1-x (x = 0.15-0.8) were studied as a model substance of a composite semiconductor film, in addition being of interest for optical storage material. Two complementary modes of time-resolved TEM were used to trace the phase transitions, induced by an attached Q-switched (50 ns FWHM) and frequency doubled (532 nm) Nd:YAG laser. The laser radiation was focused onto the specimen within the TEM to a 20 μm spot (FWHM). Discrete intermediate states were visualized by short-exposure time doubleframe imaging /1,2/. The full history of a transformation was gained by tracking the electron image intensity with photomultiplier and storage oscilloscopes (space/time resolution 100 nm/3 ns) /3/. In order to avoid radiation damage by the probing electron beam to detector and specimen, the beam is pulsed in this continuous mode of time-resolved TEM,too.Short events ( <2 μs) are followed by illuminating with an extended single electron pulse (fig. 1c)


RSC Advances ◽  
2020 ◽  
Vol 10 (71) ◽  
pp. 43459-43471
Author(s):  
Hussain A. Z. Sabek ◽  
Ahmed M. M. Alazaly ◽  
Dina Salah ◽  
Hesham S. Abdel-Samad ◽  
Mohamed A. Ismail ◽  
...  

Solvation-dependent photophysical properties of two push–pull thiophene-based compounds with donor–π–acceptor (D–π–A) structures were investigated using absorption, fluorescence emission and time resolved spectroscopy, and supported by different solvation models.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Sicong Wang ◽  
Chen Wei ◽  
Yuanhua Feng ◽  
Hongkun Cao ◽  
Wenzhe Li ◽  
...  

AbstractAlthough photonics presents the fastest and most energy-efficient method of data transfer, magnetism still offers the cheapest and most natural way to store data. The ultrafast and energy-efficient optical control of magnetism is presently a missing technological link that prevents us from reaching the next evolution in information processing. The discovery of all-optical magnetization reversal in GdFeCo with the help of 100 fs laser pulses has further aroused intense interest in this compelling problem. Although the applicability of this approach to high-speed data processing depends vitally on the maximum repetition rate of the switching, the latter remains virtually unknown. Here we experimentally unveil the ultimate frequency of repetitive all-optical magnetization reversal through time-resolved studies of the dual-shot magnetization dynamics in Gd27Fe63.87Co9.13. Varying the intensities of the shots and the shot-to-shot separation, we reveal the conditions for ultrafast writing and the fastest possible restoration of magnetic bits. It is shown that although magnetic writing launched by the first shot is completed after 100 ps, a reliable rewriting of the bit by the second shot requires separating the shots by at least 300 ps. Using two shots partially overlapping in space and minimally separated by 300 ps, we demonstrate an approach for GHz magnetic writing that can be scaled down to sizes below the diffraction limit.


Sign in / Sign up

Export Citation Format

Share Document