Application of X-ray Photoelectron Spectroscopy to the Study of Fiberglass Surfaces

1974 ◽  
Vol 28 (3) ◽  
pp. 219-222 ◽  
Author(s):  
Gary D. Nichols ◽  
David M. Hercules ◽  
Roy C. Peek ◽  
Dennis J. Vaughan

The application of x-ray photoelectron spectroscopy (ESCA) to the study of fiberglass surfaces is reported. Qualitatively, ESCA has been used to show the change in concentration of elements at the surface when fiberglass is subjected to heat and/or acid treatment. Diffusion of calcium to the surface as a function of temperature has been studied. Similarly, leaching of aluminum by acid as a function of pH is reported. The ability of ESCA to detect organic functional groups attached to fiberglass surfaces has been demonstrated for nitrogen and sulfur. Fiberglass coated with organic groups having chelating properties has been shown to extract metals from solution. It has also been demonstrated that ESCA can follow reactions of organic functional groups on glass surfaces, namely sulfonation of an amine.

2010 ◽  
Vol 146-147 ◽  
pp. 805-809
Author(s):  
Ji You Gu ◽  
Lan Zhang ◽  
Xian Kai Jiang

The investigations including the acid treatment to multi-walled carbon nano-tubes (MWNTs) and the synthesis of MWNTs/polyurethane composites via in situ polymerization were done. X-ray Photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and dynamic mechanical analysis (DMA) were utilized for evaluating the effects of acid-treated MWNTs on the properties and microstructure of the composites. The results indicated that carboxyl groups could be successfully introduced onto the surface of MWNTs by acid treatment. The dynamic storage modulus and glass transition temperature of composites increased with the existence of MWNTs. The improvement of polyurethane by acid-treated MWNTs performed better compared to raw MWNTs.


Sign in / Sign up

Export Citation Format

Share Document